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1. INTRODUCTION

The Atmospheric Infrared Sounder (AIRS) is a facility instrument, selected by NASA to
fly on the second, Earth Observing System polar-orbiting platform, EOS-Aqua. The EOS
Aqua was launched on 4 May 2002, from Vandenberg, CA, into a 705-km altitude,
circular polar orbit, with 1:30 AM ascending node. The same platform also carried the
NOAA operational Advanced Microwave Sounding Unit (AMSU) and the microwave
Humidity Sounder of Brazil (HSB). AIRS is designed to meet the requirements of the
NASA Earth Science Enterprise climate research programs and the NOAA operational
weather-forecasting plans. AIRS, AMSU and HSB were put into the operational, routine
data-gathering state on 31 August 2002. AIRS and AMSU have worked perfectly since
then, but the scan motor of HSB failed in February 2003, causing the loss of the HSB

data.

The launch of AIRS on the EOS Aqua spacecraft opened a new era in imaging,
hyperspectral infrared sounding. Other hyperspectral infrared sounders have preceded
AIRS: the Infrared Interferometer Spectrometer (IRIS) experiment on Nimbus 3 and 4
(Conrath, et al., 1970) collected data from April - July 1969 and April 1970 - January
1971. The Infrared Monitor for Greenhouse Gases (IMG) (Kobayashi, et al., 1999)
collected data from October 1996 - June 1997. Both instruments sounded at the sub-
spacecraft point only and were Fourier Transform Spectrometers (FT'S), which operated
for less than one year. The AIRS design, a cooled grating-array spectrometer, with no
moving parts, was selected for its exceptional reliability, operational simplicity and
radiometric qualities. AIRS is a +/-50-degree cross-track scanner, i.e., the data can be
used to create hyperspectral images. Since the start of routine data gathering on 31

August 2002, AIRS has returned 2.9 million spectra of the upwelling radiance each day.

Details of the AIRS design and measurement objectives are provided in Aumann, et al.,
(2003); details of the prelaunch testing and on-board performance analysis are given in
Pagano, et al., (2003); Lambrigtsen (2003) describes the AMSU and HSB instruments.

An overview of results, obtained with the first three years of AIRS data, is given in
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Chahine, et al., (2006). The accuracy of the geophysical parameters, derived from the
Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of

fractional cloud cover, using the V4.0 Level 2 algorithm, is analyzed in Susskind, et al.,
(2006).

In the following document we present the theoretical basis of the AIRS Level 2 products
algorithm. The Level 2 products algorithm is designed such that all AIRS data products
will simultaneously satisfy the measurements in a least-squares sense. This requires a
complex interaction between algorithms for the various products. For this reason, all
products are discussed in one document. The overall flow of data is shown in Figure 1,
with reference to chapters in the ATBD. The algorithm described in this document has
been implemented as the AIRS Level 2 Product Generation Executive (PGE), Version
4.0, at the Goddard Space Flight Center (GSFC) Distributed Active Archive Center
(DAAC).

AIRS is an imaging hyperspectral sounder, which covers 80% of the globe twice per day,
during the ascending (day) and the descending (night) overpasses. However, the images
are in scan coordinates, with considerable overlap at high latitudes and gaps near the
equator. Level 3 products use the position-tagged Level 2 products to create eight-day
and monthly mean images, which will ultimately be used to create the AIRS climatology.
Separate fields are produced for each of the ascending (day) and descending (night)
orbits. The Level 3 algorithm and production rules, using the Level 2 quality flags, are

described in Appendix B.

Some results, obtained with the first three years of AIRS data, are shown in Appendix C.
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2. AIRS/AMSU-A/HSB DATA PRODUCTS

2.1 Standard Products
The AIRS Level 2 PGE produces four different files in EOS HDF Swath format:

e Standard Product

e (Cloud-Cleared Radiance

e Support Product

e Quality Assessment Support Product

Successive files provide increasingly detailed information about the AIRS Level 2

retrievals.

It is worth noting that each file encompasses one ‘granule’ of AIRS data. Granules are
formally defined as the smallest aggregation of data that is independently managed (i.e.,
described, inventoried, retrievable). An AIRS granule has been set as 6 minutes of data,
corresponding to exactly 45 scanlines of AMSU data or 135 scanlines of AIRS and HSB
data. The UTC start time of the N-th granule of each data is (146+(N-1)*360)/3600
hours. The orbit repeat pattern of the EOS Aqua is 16 days, 1.e. the spatial coverage of the

Nth granule is repeated (almost) exactly 16 days later.

The Standard Product consists of retrieved estimates of cloud and surface properties,
plus profiles of retrieved temperature, water vapor, ozone and a flag indicating the
presence of cloud ice or water. Estimates of the errors associated with these quantities
will also be part of the Standard Product. The profile vertical resolution is 30 points total
between 1000 mb and .02 mb; WMO pressure levels are used in the troposphere and
lower stratosphere. The Standard Product contains quality assessment flags in addition to
retrieved quantities. The Standard Product will be generated at all locations atmospheric

soundings are taken.

Cloud-Cleared Radiances are produced along with the AIRS Standard Product, as they
are the radiances used to retrieve the Standard Product. Nevertheless, they are an order
of magnitude larger in data volume than the remainder of the Standard Products and,

many Standard Product users are expected to have little interest in the Cloud Cleared
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Radiance. For these reasons they are a separate output file, but like the Standard Product

will be generated at all locations.

The Support Product includes higher vertical resolution profiles of the quantities found
in the Standard Product, plus intermediate output (e.g., microwave-only retrieval),
research products such as the abundance of trace gases, and detailed quality assessment
information. The Support Product profiles contain 100 levels between 1100 and .016 mb;
this higher resolution will simplify the generation of radiances using forward models,
though the vertical information content is no greater than in the Standard Product
profiles. The intended users of the Support Product are researchers interested in
generating forward radiance, or in examining research products, and the AIRS algorithm
development team. The Support Product will be generated at all locations as Standard

Products.

The final AIRS Level 2 data product is the Quality Assessment Support Product. This
output is intended to provide insight into the detailed workings of the AIRS retrieval
algorithm, and will contain a large number of intermediate retrieved quantities, their
estimated uncertainties, and associated quality assessment parameters. Because of its
large size, the quality assessment Support Product will be generated only at those
locations where the AIRS retrieval algorithm is known to be functioning poorly, based
upon quality assessment information. The intended users of the Quality Assessment
Support Product are the AIRS retrieval algorithm development team, and scientists
validating the performance of these algorithms, primarily at the Team Leader Science

Computing Facility (TLSCF) at JPL. It will not be generated at the GSFC DAAC.
2.2 Research Products

AIRS will produce a number of research products that will be developed and tested after
launch. Primary among these are trace constituent profiles of CO and CH,, Outgoing
Longwave Radiation (OLR) and Clear Sky Outgoing Radiation (COLR), and possibly
total CO, burden. As opposed to the standard products, research products are more

experimental not only for the algorithm, but also for the validation. The intent is to
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ultimately upgrade those research algorithms which pass peer review to standard

products.
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3. INPUT QUALITY CONTROL AND ANCILLARY
PRODUCTS

Key to the quality of the Level 2 products is careful quality control of the calibrated
radiances. The quality control is divided into inter-instrument QC, microwave QC,

infrared QC, and visQC.

The inter-instrument QC simply validates that valid data for a 3x3 ensemble of AIRS
footprints exist. For all instruments whose data are present and marked valid with state =

0 (PROCESS), the algorithm checks:
1) Time is later than Jan 01, 1994.
2) Latitude is in {-90.1, 90.1}.
3) Longitude is in {-180.1, 180.1}.
If any data are bad, that instrument is marked bad.

Of those that pass the first test, pair-wise comparisons are made of timestamps and
locations to make sure the observations are synchronized. If any comparisons fail, then

all data for this FOV are considered bad.
4) AMSU distance to central AIRS FOV is greater than 45 km.
5) AMSU distance to central AIRS FOV is greater than 17 + 1/cos(satzen) km.
6) ITime(AMSU) - Time(AIRS) - 0.66667 secl > 2 sec
7) AMSU distance to central HSB FOV is greater than 45 km.
8) AMSU distance to central HSB FOV is greater than 17 + 1/cos(satzen) km.
9) ITime(AMSU) - Time(HSB) - 0.52167 secl > 2 sec

10) HSB distance to central AIRS FOV is greater than 45 km.
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11) HSB distance to central AIRS FOV is greater than 17 + 1/cos(satzen) km.

12) ITime(HSB) - Time(AIRS) - 0.145 secl > 2 sec

3.1 Microwave QC
AMSU-A data is screened for the following problems:
1) AMSU-AL State is not 0 (Process)
Any state other than process indicates data is missing or bad.
AMSU-ALI data is most important so all AMSU-A data is screened
based on it.
2) BT >350K or BT <50K
If any channel is out of bounds, the entire FOV is discarded.

HSB data is screened for the following problems:

1) HSB State is not 0 (Process)
Any state other than process indicates data is missing or bad.

2) BT >350 K or BT <50 K

If any channel is out of bounds the entire FOV is discarded.

3.2 IR QC and Local Angle Adjustment

The IR QC has three components: QC using flags from Level 1B, missing data fill in, and

local angle adjustment.

3.2.1 QC using Flags from Level 1B

Individual IR radiances are excluded from further processing if:

1) AB_state in static channel properties file is > 2.

2) ExcludedChans in L1B input is > 2. (ExcludedChans is a copy of AB_State at
the time of L1B processing. Under normal circumstances this check is
redundant with #1, but it is possible for L2 to be processed later with different
information in the channel properties file.)

3) High noise is indicated by CalChanSummary bit 3.

10
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4) A gain, offset problem, or "pop" is indicated by CalFlag bits 4-6.

5) Radiances converted to BT fall outside [175 K - 10*NEDT, 360K + 10*NEDT +
solar], where the solar allowance is:

0 for night data

0.5 * PI*(RADIUS_SUN/DISTANCE_ SUN)**2 *Solar_surface radiance
for day data

The entire FOVs are excluded from further processing if:
1) No valid solar zenith angle is available.

2) More than 20 channels fail BT range test in #5 above.

3.2.2 Missing Data Files

The V4.0 physical retrieval uses a relatively small fraction of the available 2378
channels. These channels are identified in a name list. Channels, flagged as bad in the
L1B data for a given scene, are not used in the physical retrieval algorithm. The
regression step uses a large fixed subset of the 2378 available channels, given in a
separate name list. If the IR radiances of some of these channels are excluded, based on
the L1B flags, fill-in values are used. Due to the highly redundant nature of the
spectrum, the fill-in values can be calculated based on a Principle Components (PCs)
approach. The PCs were trained on calculated spectra from standard profiles. If more

than TBD of the channels in the name list are filled in, the spectrum is rejected.

3.2.3 Local Angle Adjustment

AIRS makes a 90-degree measurement, cross-track between -49 and +49 degrees. The
data analysis, however, uses the data in 3x3 clusters with 30 scan angles between -49 and
+49 degrees. A primary assumption of cloud clearing (Section 5.2) is that within a 3x3
array of 9 AIRS FOVs the differences are dominated by differences in clouds. Local
angle adjustment removes one potentially confounding source of intra-FOV variation:
differences in observing geometry. In each 3x3 there are 3 observations at each of 3

different scan angles. This step makes small adjustments to the spectra for the 3 highest-

11
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angle and 3 lowest-angle FOVs so all FOV's resemble those which would be observed at

the central angle. No adjustment is applied to the central FOVs.

The actual adjustment is calculated using a PCs approach. The PCs were trained on
calculated spectra from standard profiles at different scan angles. Adjustments are

assumed to by symmetric about nadir.

In the L2 system missing or bad data is first filled using the PCs. Then final PCs are

calculated, and the radiances are adjusted.

3.3 V/NIR QC and V/NIR Cloud Flags

Any V/NIR data less than 0.0000001 radiance units for any channel and any pixel within
a FOV excludes the entire FOV from further processing. The V/NIR channels are for

diagnostic purposes only. They are not used in the routine L2 data processing.

3.4 Background Climatology

A background climatology “Clim” is available to all retrievals on a 2.5 degree mercator
grid using 100 levels. In L2 V4.0 Clim T, H,O are used directly only in the MW-Only
retrieval step. Reliance on the water climatology is key when HSB data are not available.
This is discussed in Section 5.1. The first pass cloud clearing uses the MW product as its

input state, and so uses Clim data indirectly.
The climatology is based on two files: "NCEP" and "UARS."

"NCEP" has temperature profiles from the surface to 100 mb and water profiles from the
surface to 300 mb as monthly means derived from the 20 year (1979-1998) reanalysis on

a 2.5 degree mercator lat/lon grid.

"UARS" has temperature, water vapor and ozone month means and zonal (latitude)
means. The information below 100 mbar comes from the NCEP reanalysis, above 100

mbar from the microwave limb sounders (UARS and MLS).
The PGE fills its climatology from these two files as:

1) Temperature profile:

12
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a) below 100 mbar from NCEP, tri-linearly interpolated by month,
lat, lon and then log-pressure interpolated onto the 100 levels.
b) above 100 mbar Temp is extrapolated using P**4 extrapolation

2) H,0 profiles. From the “NCEP” file below 300 mb, tri-linearly interpolated by
month, lat, lon. Above 300 mb the "UARS" file is used, linearly interpolated

between two latitude zones.

3) Ozone profiles. From "UARS" file, linearly interpolated between two latitude

zones. No time interpolation.

4) The AIRS retrievals are based on the absorption by CO,. The abundance of
CO; is increasing currently at the rate of 2 ppmv/year. In addition, there is a +/-5
ppmv seasonal and latitudinal variability in the CO;, column abundance. The
AIRS L2 PGE assumes that the abundance of CO; is fixed at 370 ppmv globally.
This value is appropriate for the year 2002 when AIRS was launched. The next
edition of the PGE (V5) will use a linear time dependence from name list, but no

seasonal or latitudinal dependence.

3.5 AVN Forecast PSurf

The AVN forecast surface pressure, PSurf, is used by the L2 retrieval. The surface
pressure is available on a one-degree grid. The surface pressure is calculated from the 3-,
6-, and 9-hour forecasts from the same model run, interpolated in space and time to

match observed location.

Clim T profile is used in the calculation of Psurf when AVN is not available.

3.6 Emissivity First Guess

The V4.0 PGE uses the Masuda emissivity over ocean. Over land the V4.0 PGE uses a
regression formulation for the emissivity, which uses the first-pass cloud-cleared

radiances as input. No first guess is used.

13
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3.7 Microwave Tuning Coefficients

The microwave brightness temperatures used in the L4.0 PGE are the antenna
temperatures. These temperatures are empirically tuned to correct for sidelobes, RTA and
other artifacts. The bias is a function of channel and scan angle and is derived from the
analysis of obs-cal for ocean using ECMWF temperature and moisture profiles. The
microwave tuning coefficients have no time, season, or latitude dependence. Details are

discussed in section 5.4.13.3.

3.8 IR Tuning Coefficients

The infrared brightness temperatures used in the L.4.0 PGE are empirically tuned to
correct for RTA artifacts. The bias is a function of channel and is derived from the
analysis of obs-calc for clear ocean spectra, using ECMWF temperature and moisture
profiles. There is no scan angle dependence. The IR tuning coefficients have no time,

season, or latitude dependence. Details are discussed in section 5.4.13.2.2.

3.9 File Format Reference

The file formats and variable name definitions for all L1A, L1B and L2 products are
given in “AIRS Version 4.0 Processing Files Description,” Version 1.1, August 2005,
JPL D-31231.
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4. THE FORWARD PROBLEM

In the following, atmospheric radiative transfer or the ‘forward problem’ will be
discussed. The physical retrieval methodology utilized by the AIRS team depends on the
ability to accurately and rapidly calculate the outgoing radiance based on the state of the
surface and the atmosphere. Sections 4.1 and 4.2 discuss the microwave and infrared
radiative transfer and error estimates. Almost invariably, the statistical evaluation of
calculated brightness temperatures, relative to those observed when the state of the
atmosphere is reliably known, differs in the mean by a small, but significant amount,
referred to as “bias.” This bias may itself be a function of other parameters, such as the
scan angle. The process used for the derivation of this bias was described in Section 3.7
for the microwave data and Section 3.8 for the IR data. The application of this bias in the

retrieval process is described in Section 5.

4.1 Radiative Transfer of the Atmosphere in the Microwave

At the frequencies measured by AMSU and HSB, the most important absorbing gases in
the atmosphere are oxygen and water vapor. The oxygen molecule has only a magnetic
dipole moment, and its lines are intrinsically much weaker than those which result from
the electric dipole of water vapor; however, the much greater abundance of oxygen in the
atmosphere more than compensates for this difference. When clouds are present, liquid
water also plays a role in radiative transfer. However, fair-weather cirrus composed of
ice particles small compared to the wavelength are generally transparent to AMSU-A and

HSB frequencies.

4.1.1 Oxygen

O, spin-rotation transitions comprise approximately 30 lines between 50 and 70 GHz and
an isolated line at 118.75 GHz (which is not observed by AMSU or HSB). Several
groups have measured the pressure-broadened widths of the lines in the 50-70 GHz band.
The line parameters used for the forward model are from the Millimeter-wave
Propagation Model (MPM92) (Liebe, et al., 1992). The characteristic of oxygen’s
microwave spectrum that introduces difficulty for construction of models is the

significant degree of line mixing. In MPM92, line mixing was treated by a first-order
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expansion in pressure. The coefficients for this expansion were determined by a
constrained linear fit to laboratory measurements made on an O, - N, mixture over the
frequency range of 49-67 GHz and the temperature range 279-327 K, with a noise level
of approximately 0.06 dB/km. Within that range, the model represents the measurements
to < 0.2 dB/km (see for example, Figure 4.1.1). It is possible that extrapolation to colder
temperatures introduces larger errors. Measurements from the NASA ER-2 at 52-56

GHz (Schwartz, 1997) seem to be in agreement with the model, however.

Dry air
6°C

- MPMS2

101.3 kPao

dB/ km

a 701

v 47.2

v 30.8

Attenuation a,

e 1949

o 12.1

a T7.60

50 55 60 65

Frequency f, GHz

Figure 4.1.1. Millimeter-wave Propagation Model Example

4.1.2 Water Vapor

Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal
atmospheric humidity, and a much stronger, opaque line at 183.31 GHz. Intensities of
these lines have been calculated and tabulated by Poynter and Pickett (1996 version of

JPL line catalog) and Rothman, et al., (1998) (HITRAN), among others. The HITRAN
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intensities are used here. For the 22-GHz line, the JPL intensity is higher than the
HITRAN value by 0.3%. There is a measurement by Liebe, et al., (1969) (estimated
error 0.3%) which is 3.5% lower than the HITRAN value. At 183 GHz, the JPL line
intensity is 0.1% higher than HITRAN. Widths have been measured by Liebe, et al.,
(1969) and Liebe and Dillon (1969) at 22 GHz with estimated uncertainty of 1% for both
self and foreign-gas broadening; and by Bauer, et al., (1989) and Tretyakov, et al. (2003)
at 183 GHz, with uncertainties of 0.5% for self-broadening and 1.0% for foreign-gas
broadening, respectively. However, Gamache, et al., (1994) concluded from a survey of
measurements of many H,O lines that, in general, measured line widths should be
considered to have uncertainties of 10-15%. The line at 183 GHz is a case in which
published measurements of width differ significantly, but the value of Tretyakov, et al.,

(2003), which is used here, lies near the centroid of the measurements.

At frequencies away from these two lines, microwave absorption by water vapor is
predominantly from the continuum, which is attributed to the low-frequency wing of the
intense infrared and submillimeter rotational band lines. In the microwave part of the
spectrum, the foreign-broadened component of the continuum is stronger than the self-
broadened component, for atmospheric mixing ratios. Measurements of continuum
absorption as a function of temperature have been made at various frequencies by Liebe
and Layton (1987), Godon, et al. (1992) and Bauer, ef al. (1993, 1995). There are also
numerous measurements at single temperatures and frequencies in the laboratory, and in
the atmosphere where temperature and mixing ratio are variable. The measurements do
not present an entirely consistent picture. Rosenkranz (1998) proposed that the most
satisfactory overall agreement with laboratory and atmospheric measurements of the
water continuum was obtained with a combination of the foreign-broadened component
from MPM87 (Liebe and Layton, 1987) with the self-broadened component from
MPMO3 (Liebe, et al., 1993). The combined model is used here.

4.1.3 Liquid Water

It is useful to distinguish between precipitating and non-precipitating clouds with respect
to their interactions with microwaves. Over the range of wavelengths measured by

AMSU and HSB, non-precipitating droplets (with diameters of 50 um or less) can be
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treated using the Rayleigh small-droplet approximation. In this regime, absorption is
proportional to the liquid water content of the air, and scattering can be neglected. The
model for the dielectric constant limits the accuracy of these calculations. The double-
Debye model of Liebe, et al., (1991) is used here; for temperatures > 0 °C, it has an
estimated maximum prediction error of 3% between 5 and 100 GHz, and 10% up to 1
THz. Although some measurements of static dielectric constant at temperatures as low as
—20 C were used by Liebe, et al. to develop their model, its use for supercooled water
must be considered to be an extrapolation, with uncertain accuracy. (The model is

implemented using the alternate eq. 2b in Liebe, et al.)

Precipitation, on the other hand, requires Mie theory to calculate both absorption and
scattering. The latter is generally not negligible, and is the dominant term at some
wavelengths. In the case of convective storms, scattering from ice at high altitudes is
often the most important process. The rapid transmittance algorithm uses only the small-
droplet approximation for cloud liquid water, and scattering is not included. For this
reason, retrieved profiles with more than 0.5 kg/m’ cloud liquid water are rejected, as

probably rain-contaminated.

4.1.4 Rapid Transmittance Algorithm

The physical retrieval algorithms used for AIRS/AMSU/HSB do radiative transfer
calculations for each profile and hence need a computationally efficient transmittance
algorithm. The microwave algorithm computes an effective channel transmittance

between two adjacent pressure levels as
\
<T(P1,P2)/ =eXp [_(a+BpV+YpL)] (4.1.1)

where py is the water vapor column density of the (P,, P,) layer, p, is its liquid water
column density, and the coefficients o, B, v, are calculated for each layer and channel.
They implicitly depend on temperature, pressure, and the angle of observation; B also
depends implicitly on p,. For AMSU channel 14, o has a weak dependence on the local
geomagnetic field. The magnetic field is calculated by a fifth-order spherical-harmonic

representation that has an accuracy of a few microteslas. The coefficient o includes the
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opacity due to O, and a small contribution from pressure-induced absorption by N,.
Parameterization of the coefficients uses approximations described by Rosenkranz (2003)
for oxygen-band or window-type channels. In the oxygen band, effective layer opacities
are represented by a polynomial in temperature. The opacity profile is computed on a set
of fixed pressure levels and then linearly interpolated to the pressure levels of the
retrieval, which can be variable (as is the case for the surface pressure). Window-channel
coefficients use analytic approximations for far-wing line and continuum absorption.
Channels near the two water lines (AMSU channel 1 and HSB channels 3-5) use a
Lorentzian-line calculation for the nearby line, with the contributions of other lines
treated in the same way as for a window. The local water-line parameters, the water
continuum, and the liquid-water absorption are interpolated from a table as functions of

temperature.

The retrieval algorithm described in Section 5.2 also makes use of the derivatives do/dt
and dp/dpy, which are computed in the rapid algorithm by appropriate analytic

expressions corresponding to the local-line and continuum components.

The transmittance of multiple layers is calculated by taking the product of the
transmittances for each layer. This transmittance is then used in the radiative transfer

equation to compute brightness temperature:

[ 0, !
Oroa = Ofirect + T(OaPS)LGS + ®sky 1 _? J

S

(4.1.2)

where Oy, is the brightness temperature emitted from the top of the atmosphere, t(0,Py)

is the one-way transmittance of the atmosphere,

Py
O e = [ T(P)< d1(0, P) >
0 (4.1.3)

is the component of brightness temperature emitted from the atmosphere on a direct path

to space, Oq is the surface brightness (emissivity times temperature),
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PS
0,, = [T(P) <dt(P;,P)>+0, < 1(0,P,)>
0 (4.1.4)

is the sky brightness temperature (including the attenuated cosmic contribution) as it
would be observed from the surface, and Ty is the physical surface temperature. T(P) is
atmospheric temperature at level P, Py is the surface pressure, and O, is the cosmic
background brightness temperature. The form of (4.1.2) allows separation of the
estimation of surface brightness from the estimation of temperature, as described in

Section 5.1.1.

0, is computed for a zenith angle 6, ; which, due to surface scattering, in general differs

sky
from the zenith angle 0 for the direct path from surface to satellite. When the surface is
classified (see section 5.1.1.1) as either water or coastline, the ratio p, = sec(0,.,)/sec(0) is
estimated as part of the retrieval solution, as described in section 5.1.1.3. For all other

surface types, surface scattering is assumed to be Lambertian, and is approximated by

sec(0,.) = 1.55-0.16 In( ¥, + 0.06) (4.1.5)
where K, = -In(T,.,;;,(0,Ps))is the opacity of the atmosphere at zenith.

Planck’s equation for radiant intensity is a nonlinear function of temperature. For
microwave frequencies, however, the physical temperatures encountered in the earth’s
atmosphere lie at the high-temperature asymptote of this function. Hence, as discussed
by Janssen (1993), brightness temperature can be used as a surrogate for radiance in the
equation of radiative transfer with an accuracy of a few hundredths of a Kelvin, provided
that the cosmic background is assigned an effective brightness temperature at frequency

v of

_hv e 41

Q.= X
€ ok e™Me (4.1.6)

instead of its actual temperature T =2.73 K, in order to linearize Planck’s function.

20



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

Figures 4.1.2 and 4.1.3 show the derivatives of transmittance with respect to a vertical
coordinate which is the logarithm of integrated water vapor for the channels sensitive to
moisture, and the logarithm of pressure (a surrogate for integrated oxygen content) for
channels in the oxygen band. These weighting functions indicate the atmospheric layers

from which the thermal emission measured by each channel originates.
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Figure 4.1.2. Oxygen Band Weighting Functions for Unit Surface Emissivity
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Figure 4.1.4. Brightness Temperature Errors (Rapid Algorithm Minus Line-by-Line
Algorithm) for AMSU and HSB Channels. Vertical Lines Indicate + 1 Standard
Deviation; € is the Surface Emissivity.

The ability of the rapid algorithm to approximate a line-by-line calculation was tested on
a set of 300 profiles from the TOVS Initial Guess Retrieval (TIGR) (Chedin, et al., 1985)
ensemble. The first 100 profiles from each of the tropical, mid-latitude, and polar groups
were used. Figure (4.1.4) shows brightness temperature errors (mean + 1 standard
deviation) at nadir, with surface emissivity = 0.7. For the channels that are not opaque (1-
5, 15-17, 19 and 20), these brightness temperature errors depend on surface emissivity.

The value € = 0.7 is typical of ocean at the highest frequencies, and intermediate between

ocean and land at the lowest frequencies. Errors for higher-emissivity land surfaces are
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smaller than in Figure 4.1.4. The errors for channel 14 include the consequences of the
magnetic field approximation. The output files contain a flag structure, MW _tair_range,
which indicates whether the final temperature at any pressure level > 0.1 hPa lies outside
of the range of profiles for which the rapid algorithm has been found to reproduce a line-
by-line calculation within the instrument sensitivity. Different bits are set for

temperatures outside the validated range by <10%, 10 to 25%, or >25%.
4.1.5 Microwave Surface Brightness Model

The surface brightness temperature spectrum Oy is modeled by a six-parameter (T, T, ,

T,,Vv,, V,,s) curve, added to an a priori surface brightness
Os(v) =¢(V)Tg + Ty + T,V /(V+Vv)+ T,v/(V + V) (4.1.7)

where €,(V) is a preliminary estimate of emissivity for the surface type obtained from the
classification algorithm described in section 5.1.1.1, and Ty, is the a priori
(climatological) surface temperature. The parameters T,, T,, T, are used in the retrieval
solution to adjust the spectrum (they have a priori values of zero), while v,, v, and s are
assigned according to surface type, as in Table 5.1.1. The last three terms in (4.1.7) also
help to correct for effects such as ocean surface roughness, errors in the dielectric
constant model, misclassification of the surface, or errors in the estimated land fraction

within the footprint.

In Figure 4.1.5, the rapid transmittance algorithm is tested against measurements made by
the AMSU-A on the NOAA-15 satellite (see Rosenkranz, 2003) and the HSB on Aqua
(see Rosenkranz and Barnet, 2006). The calculated brightness temperatures are based on
coincident radiosonde profiles, using window channels to infer the surface emissivity, as
described in section 5. Sidelobe corrections from Mo (1999) were applied to the AMSU-

A measurements in the figure, but no corrections were made to the HSB measurements.
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Figure 4.1.5. Statistics of differences between measured brightness temperatures
minus brightness temperatures calculated from radiosonde profiles. Three profile
ensembles are shown for HSB.
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4.2 Radiative Transfer of the Atmosphere in the Infrared

Physical retrievals of atmospheric parameters attempt to minimize the difference between
computed and observed channel radiances. The accuracy of the retrieval is therefore
directly related to the accuracy of the computed radiances. AIRS measures the
convolution of the up-welling monochromatic radiances with the instrument spectral
response function (SRF). An exact calculation of the observed radiances therefore
requires the convolution of simulated monochromatic radiances. These computed
radiances are complicated functions of the atmospheric state (temperature, pressure, gas
amount), the gas transmittances, and the AIRS SRFs. Since the atmospheric emission

lines can have widths as small as ~ 0.001 ¢cm’, the wavenumber grid scale for the

radiance calculation must have a similar spacing. This small grid spacing, combined with
the time- consuming SRF convolutions, makes a monochromatic calculation of radiances
orders of magnitude too slow for practical use. Instead, we must use a fast radiative
transfer model that is based on appropriately convolved atmospheric transmittances for
each spectral channel. Then the radiative transfer can be performed on a per-channel

basis rather than on a finely spaced monochromatic wavenumber grid.

The starting point for understanding the AIRS radiative transfer algorithm (AIRS-RTA)
is the monochromatic radiative transfer equation. The monochromatic radiance leaving

the top of a nonscattering atmosphere is

R(v.0) = £,(V)B(v.T,)x(v.p,.0)+ | B(v.T)

+p,(VH, (V)T(v,p,.0)T(v,p0,, )cos(O

dt(v,p,0) d
dp 4.2.1)
)+ R,

sun

where B(v, T) is the Planck function emission at frequency and temperature 7, 7 v, p, 6)
is the transmittance between pressure p and the satellite at viewing angle 6, and T, €, and

p, refer to the Earth’s surface temperature, emissivity, and reflectivity respectively. The
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solar radiance incident at the top of the atmosphere is represented by H,

sun®

while R, is a
relatively small radiance contribution arising from the reflection of the downwelling

atmospheric thermal emission

R,(v)=2mp 7(v, ps,e)j:;o B(v,T)|?_sin(6,)cos(6),)

anvp0) e 422
dp

where 7, is the transmittance between pressure p and the surface. The dependence of

temperature and angle on pressure (altitude) has been suppressed in the above equations,

as well as the dependence of the transmittances on temperature and gas abundance.

The AIRS-RTA allows the integration of the radiative transfer equation over 100
atmospheric layers to be performed in a discrete form. For reasons of clarity and brevity
we omit further discussion of the last two terms in Equation (4.2.1), except to note that
they are included in the AIRS-RTA by simplified approximations. A discrete form of the

radiative transfer equation can then be written conveniently as
N
Rmeas = JR(V)f(V - VO )dv = I(ExB(Ts )TN + ZB(T; )(Ti—l - Ti ))f(v - VO )dv (423)
i=1

where the atmospheric layers are numbered from space to the surface, 1 to N respectively.
B(T,) is the Planck emission for layer i at temperature 7, 7;is the transmittance from layer
i to space, inclusive, and f{v - v,) is the AIRS SRF for the channel centered at v,. The
emissivity and Planck function are nearly constant over the narrow width Av of the AIRS

channels, so they may be moved outside the integral. After integrating the transmittances,

we are left with the channel-averaged form of the radiative transfer equation,
N
Rmeas = EYB(TS )TN + ZB(T; )(Ti—l - Ti) (424)
i=1
where all terms now represent appropriate channel-averaged quantities.
The polychromatic approximation introduced in the above relation replaces the
monochromatic layer-to-space transmittances with transmittances convolved with the

SRFs. This in effect convolves the outgoing radiances, allowing us to do radiative

transfer at just a single frequency per channel. In most cases, the AIRS channel radiances
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calculated from the above equation using convolved layer-to-space transmittances differ
from the convolved monochromatic AIRS channel radiances by < 0.05 K, assuming one

has perfect layer-to-space convolved transmittances in hand.

Figure 4.2.1 illustrates the large difference in spectral resolution between the upwelling
monochromatic radiation and an AIRS brightness temperature spectrum. Because of this
large difference in spectral resolution one cannot derive the layer-to-space transmittances
directly from the product of the convolved layer transmittances since Beer’s law is no
longer valid. Overcoming this problem is one of the major issues in the development of a

model for fast, parameterized, convolved layer transmittances.
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Figure 4.2.1. Simulated Monochromatic (Blue) and AIRS SRF Convolved (Red)

Brightness Temperature Spectra. The red circles indicate the actual AIRS channel
centroids.
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In the following sections we discuss the major issues in developing the AIRS-RTA,
which include: (1) forming a discrete grid for integrating the radiative transfer equation,
(2) parameterizing the layer transmittances as a function of the atmospheric state, (3) the
spectroscopy needed to compute atmospheric transmittances, (4) the line-by-line
algorithm used to generate the monochromatic transmittances (5) the AIRS spectral

response functions.

The flowchart shown in Figure 4.2.2 outlines the flow of activities needed to develop the

AIRS-RTA, which is discussed in the following text.
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Figure 4.2.2. Flow Diagram for Development of the AIRS-RTA
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4.2.1 AIRS Atmospheric Layering Grid

The atmospheric pressure layering grid for the AIRS-RTA model was selected to keep
radiative transfer errors below the instrument noise. Grid characteristics are a function of
the spectral region(s) of observation, the instrument resolution, and instrument noise. The
speed of the final fast transmittance model will depend on the number of layers, so

excessive layering should be avoided.

Line-by-line simulations indicate some channels need a top layer with pressures as small
as 0.01 mb (an altitude of ~ 80 km). The region of primary importance to AIRS is the
troposphere and lower stratosphere, where layers on the order of 1/3 of the nominal 1-km
vertical resolution of AIRS retrievals are desired. Smoothly varying layers facilitate
interpolation and avoid large changes in layer effective transmittances. The following

relation defines the pressure layer boundaries selected for AIRS
P = (ai’* +bi+c)" (4.2.5)

where P is the pressure in millibars; 7 is the layer boundary index and ranges from 1 to
101; and the parameters a, b, and ¢ were determined by solving this equation with the
following fixed values: P, = 1100 mb, P;; = 300 mb, and P,,, = 0.005 mb. The 101
pressure layer boundaries in turn define the 100 AIRS layers. These layers vary smoothly
in thickness from several tenths of a kilometer near the surface to several kilometers at
the highest altitudes. Figure 4.2.3 is a plot of the layer mean pressure for the 100 AIRS

layers.

4.2.2 Fast Transmittance Modeling

Over the years, a number of fast transmittance models have been developed for various
satellite instruments. However, some of these models only have been applied to the
microwave region where the measured radiances are essentially monochromatic and
easier to model. AIRS required a major new effort in the development of its RTA. Some

of the details of our model can be found in Strow, et al., (2003).

The AIRS-RTA most closely follows Susskind, et al., (1983) by parameterizing the

optical depths rather than transmittances for channels where the influence of water vapor
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is small. Channels sensitive to water vapor are modeled using a variant of the Optical
Path TRANsmittance (OPTRAN) algorithm developed by McMillin, et al., (1979, 1995).
The AIRS infrared fast model is thus a hybrid of both Susskind’s approach and
OPTRAN.
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Figure 4.2.3. Mean Pressure of the AIRS-RTA 100 Layers

The AIRS-RTA model actually produces equivalent channel averaged optical depths, k,
which are related to the layer transmittances, 7, by 7 = exp(-k). The optical depth is the
product of the absorption coefficient and the optical path. For AIRS, a fast model for & is
much more accurate than a model that directly returns layer 7. k is computed for each of
the 100 atmospheric layers used for AIRS radiative transfer. The current AIRS-RTA
model allows water, ozone, methane, carbon monoxide, carbon dioxide, the temperature,
and local scan angle to vary. All other gases are treated as “fixed” gases. These gases are
“fixed” in the sense that we only need to parameterize their dependence on temperature,
not amount. Although the observed radiances are primarily sensitive to temperature via

the Planck function, the temperature dependence of the transmittances is also important.
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The following discussion outlines the development of a parameterization of the
convolved layer transmittances as a function of the atmospheric state. Most of the
complications of this parameterization arise from the loss of Beer’s law, which forces us
to introduce terms in the transmittance parameterization for a given atmospheric layer
that depend on layers above the particular layer under consideration. These
parameterizations, which are functions of the atmospheric profile, are derived from least-
squares fits to a statistical set of atmospheric profiles in order to ensure that we can
faithfully produce the appropriate transmittances under all atmospheric conditions. We

call this statistical set of profiles our “regression profiles.”

Breakout of Gases Once the atmospheric layering grid and regression profiles (see later
discussion) are selected, the monochromatic layer-to-space transmittance can be
calculated. The gases are distributed into sub-groups that are either fixed or variable. The
details of how the transmittance model simultaneously handles several variable gases is
somewhat complicated and beyond the scope of this document. For simplicity, this
discussion is restricted to fixed gases (F), water vapor (W), and ozone (O). The breakout
of the other variable gases is similar. The monochromatic layer-to-space transmittances
for the 48 regression profiles are calculated for each pressure layer, grouped into the
following three sets, and convolved with the AIRS SRF

F, = 1,(fixed)

FO, = 1,(fixed + ozone) (4.2.6)

FOW, = t/( fixed + ozone + water)

Water continuum absorption is excluded since it varies slowly with wavenumber and
does not need to be convolved with the AIRS SRF. In addition, separating out the water
continuum improves our fit of the local line water transmittance. Later, the water

continuum is factored into the total transmittance as a separate term.

For each layer [, the convolved layer-to-space transmittances are ratioed with
transmittances in the layer above, / — 1, to form effective layer transmittances for fixed

(F), water (W), and ozone (O) as
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Fleﬂ'zi
b
FO, F
g=—"s+-L (4.2.7)
FO,_, F
wer - FOW,  FO,
'\ FOW,_, FO,,

Forming these ratios in the above manner reduce the errors inherent in separating the gas
transmittances after the convolution with the instrument spectral response function. The
total effective layer transmittance can be recovered as

FOW,

FOW? =F" x O xW7 =
FOW,,

(4.2.8)

The convolution of a product of terms is in general not the same as the product of the
terms convolved individually. However, the above formulation guarantees the product of
all the layer transmittances from layer / to N exactly returns FOW,, if the layer

transmittances are exact.

The zeroth layer transmittance (i.e., when / — 1 = 0) is taken to be exactly 1.0. The
negative logarithm of these layer effective transmittances is taken to get effective layer

optical depths

kfixed = _ln(Fé’ﬁ)
=—In(0") (4.2.9)
=—In(W)

ozone

k

water

which become the dependent variables in the fast model regression.

Predictors The independent variables in the fast model regression, called the predictors,
are a set of variables relating to the atmospheric profile. The optimal set of predictors
used to parameterize the effective layer optical depth depends upon the gas, the
instrument SRFs, the range of viewing angles, the spectral region, and even the layer
thicknesses. In short, no one set of predictors is likely to work well in every case. Finding
the set of predictors which give the best results is, in part, a matter of trial and error.

However, there are some general trends.
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For an instrument such as AIRS with thousands of channels, it is difficult to develop
individual optimal predictors for each channel. The AIRS-RTA uses seven sets of
predictors, each corresponding with a subset of channels. These sets of predictors were
determined by extensive trial and error testing, as well as consideration of the relative
importance of the variable gases in each channel. Supplemental sets of predictors are

used for OPTRAN water, the water continuum, and variable CO,.

The regression is prone to numerical instabilities if the values of the predictors vary too
greatly. Consequently, we follow the usual practice of defining the predictors with
respect to the values of a reference profile, either by taking a ratio or an offset. There is
also a danger of numerical instability in the results of the regression, due to the
interaction of some of the predictors. Sensitivity of the output to small perturbations in
the predictors is avoided by systematic testing, but there are practical difficulties in

detecting small problems since we are performing on the order of 1 million regressions.

As an example, the predictors for the fixed gases for one of the seven sets are
Da 2)a’ 3)aT, 4aT? 5)T, 6)T> T)al. 8)aT/T, (4.2.10)

where a is the secant of the local path angle, T is the temperature ratio 7,,,4,/T .frence» and

T, is the pressure weighted temperature ratio above the layer
i
Tz(l)zZP(i)P(i)—P(i—l)Tr(i—1) (4.2.11)
i=2

where P(i) is the average layer pressure for layer i. The predictors for the variable gases
can involve more complicated dependencies on the gas and the pressure weighted gas
ratios above the layer, similar to the temperature term defined above. Note that terms like
T, (or W, etc. for the variable gases) make the layer / transmittance dependent on the

temperature (or gas amounts) in the layers above /.

Regressions for Fast Transmittance Parameters The accuracy of radiative transfer
calculations made with the AIRS-RTA model was improved significantly by weighting
the variables prior to performing the regression. Radiative transfer is insensitive to layers

for which the change in layer-to-space transmittance across the layer is approximately
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zero. This occurs when either the layer effective transmittance is approximately unity, or
the layer- to-space transmittance is approximately zero. Therefore, the data going into the
regression is not all of equal importance to the final accuracy of radiative transfer
calculations made with the model. We found it useful to weight the data in terms of both
its effective layer optical depth as well as the total optical depth of all the layers above

the layer under consideration.

The spectral dependence of the fitting errors are shown in Figure 4.2.4 and a histogram of
these errors in Figure 4.2.5. The errors are calculated with respect to the regression
profile set, comparing the RMS errors between the brightness temperatures of input data
and the AIRS-RTA model calculated values. These graphs including errors from all six
angles used for regression profiles. They do not include errors associated with the

parameterization of the reflected thermal and reflected solar radiation.

During the development of the AIRS-RTA, the RMS errors were computed for a large
independent set of profiles. The RMS errors for the independent profiles were generally
similar to those for the regression profiles. The regression profiles represent a wide range
of possible conditions, with a number of extreme cases. It is important to recognize,
however, that the AIRS-RTA does have a statistical component that comes from the

selection of the regression profiles.

Regression Profiles One other necessary pre-processing step is the selection of a set of
profiles for calculation of the layer-to-space transmittances. The transmittances for these
profiles become the regression data for the fast transmittance coefficients. These profiles
should span the range of atmospheric variation, but, on the whole, should be weighted
towards the more typical cases. The range of variation provides the regression with data
points covering the range of possible atmospheric behavior, while the weighting of the
mix of profiles towards more typical cases produces a transmittance model that works

best on more statistically common profiles.

The process of calculating and convolving monochromatic layer-to-space transmittances
is generally computationally intensive, thus imposing a practical limit on the number of

profiles one can calculate for use in the regression. As discussed earlier, 48 regression
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profiles (at 6 viewing angles each) are sufficient to cover most of the profile behavior.
This number is a compromise between the available time and computing resources and
the need to cover a wide range of profile behavior in the regression. Choosing too few
profiles leads to accuracy problems for profiles outside the range of behaviors
considered. Choosing more profiles than necessary does not hurt the fast model, but does

consume extra time and computer resources.
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Figure 4.2.4. RMS Errors of the AIRS-RTA Model

Each profile should cover the necessary pressure (altitude) range with data for
temperature as well as absorber amount for each of the gases allowed to vary. The fixed
gases include all whose spatial and temporal concentration variations have a negligible
impact on the observed radiances. As previously mentioned, the variable gases are H,O,
0O,, CO, CH,, and CO,. All other gases are included in the “fixed gases.” CO, is handled
differently than the other variable gases, and only two CO, absorber amount profiles are

used: a standard amount profile and a perturbed amount profile. The standard amount
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CO, profile is treated as a fixed gas. A very simple and accurate parameterization is used
to model the difference in transmittance between the standard CO, profile transmittances

and the perturbed CO, profile transmittances.

For those satellite-viewing angles relevant to the AIRS instrument (0 to 49 degrees), the
effects of viewing angle can be approximated fairly well by multiplying the nadir optical
depth by the secant of the local path angle. This approximation neglects the minor
refractive effect at large angles. Due to the curvature of the Earth, the local path angle is
in general not the same as the satellite viewing angle, but is related to it by a fairly simple
equation. Local atmospheric path angles of 0, 32, 45, 53, 60, and 63 degrees are used in
the regression profiles to cover the 0-49 degree satellite view angle range. An additional
six angles between 69-84 degrees are used for the shortwave channels where

transmittances at large angles are need to model the reflected solar radiance.
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Figure 4.2.5. Histogram of the AIRS-RTA Model, Fitting Errors for All Channels
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4.2.3 Spectroscopy

The ultimate goal is to produce an AIRS-RTA that does not introduce significant errors in
AIRS computed radiances. This requires a fast model that can compute accurate
transmittances. Even if the fast model RMS fitting errors are zero, the accuracy of the
transmittances are dependent upon the quality of the spectroscopic line parameters and

lineshape models used to compute the monochromatic transmittances.

Due to the dominance of either CO, or H,O absorption in the majority of AIRS channels,
the most important spectroscopy errors are associated with errors in the line parameters
and line shapes of these two gases. The line parameters most likely to introduce
spectroscopy errors into the fast forward model for AIRS are the line strengths, line
widths, and the temperature dependence of the line widths. However, errors in spectral
lineshapes and continuum absorption probably are generally more troublesome than line

parameter errors.

Currently, the HITRAN-2000 (Rothman, et al., 2003) database is used for most
atmospheric line parameters. As so many bands and molecules contribute to the observed
radiances, the accuracy of the existing line parameters is difficult to judge in detail. Based
upon our analysis of AIRS observations and calcuated radiances, we estimate the
combined effects of line parameter and lineshape model errors in the computed optical
depth of the stronger absorbing “fixed” gases (which in most spectral regions is
dominated by CO,) are typically at the 5% level, while for water the optical depth errors

are at the 10% level.

Errors in the spectral line shapes of CO, and H,0O are much more problematic than line
parameter errors. Because of the large optical depths of CO, and H,O in the atmosphere,
their spectral line wings can be important, especially for remote sensing of temperature
and humidity. For example, AIRS channels with the sharpest weighting functions are
located in between lines or in the line wings where knowledge of the spectral line shape
is most important. Moreover, accurate measurements of the line wing absorption are

exceedingly difficult due to problems simulating atmospheric optical depths in a
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laboratory cell, especially for H,O. It is also tedious and expensive to make these large

optical depth measurements at the low temperatures found in the upper troposphere.

Figure 4.2.6 shows the optical depth “tuning” used with the AIRS-RTA in version 4
processing. These multipliers are used to scale the indicated component of the optical
depth inside the AIRS-RTA. These are empirically determined values, and some small
portion of these adjustment may be due to error sources other than spectroscopy. Tracing
these adjustments back to line parameter errors is no simple task and has not yet been

attempted.

Figure 4.2.7 shows the effects of our optical depth tuning on AIRS radiances. The data
set consists of the clearest night-time AIRS observations matched with sondes launched
as part of the AIRS validation campaign. The sonde profiles were used with the AIRS-
RTA to compute simulated radiances, which were then differenced with the observations.
The sonde data did not extend to the stratosphere, so ignore the bias in the 15-um and
4.3-um stratospheric channels. We solved for an effective surface skin temperature using

the AIRS super-window channel at 2616 cm-1, so the bias there has been forced to zero.

4.2.4 Monochromatic Transmittance Calculations

The monochromatic layer-to-space transmittances used to determine the parameters of
the AIRS-RTA model are indirectly generated using our custom line-by-line code
(UMBC-LBL). Building a custom LBL code allowed us to incorporate those features we
deemed desireable, include our Q-, P-, and R-branch CO, line-mixing model which has a

significant effect on the optical depths in the 15-um and 4-um regions.

Currently, 48 profiles are used in the regressions for the fast transmittance parameters.
Because line-by-line (and especially Q/P/R branch line mixing) calculations are very
slow, we developed a new pseudo line-by-line algorithm called the kCompressed
Atmospheric Radiative Transfer Algorithm (kCARTA) to allow the (relatively) fast
computation of almost monochromatic transmittances and radiances. The UMBC-LBL
was used to compute a very large look-up table of monochromatic layer optical depths for

a set of 11 reference atmospheric profiles. The KCARTA program interpolates the lookup
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table optical depths for temperature and scales for absorber amount to compute the
optical depths for the desired profile. Any change in the physics of the line-by-line code
or line parameter database requires a recalculation of the affected portion of the look-up

table.

The kKCARTA database consists of many individual look-up tables each covering a 25-
cm’ interval with 10,000 points (0.0025-cm'spacing) for 100 pressure layers (0.009492
to 1085 mb) and 11 temperatures. The 11 temperature profiles are the U.S. Standard
profile, and 10 profiles offset from it in + 10 K increments. On average, 7 gases must be
included per 25-cm™ region. The continua due to gases such as N, and O, are also
included in these tables. Optical depths are computed using a 0.0005 cm'grid and then

averaged to the database grid spacing of 0.0025 cm'.
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Figure 4.2.6. Optical Depth Tuning used in the V4 AIRS-RTA. The bottom panel
shows the same data as the top panel, but with the vertical range expanded to
illustrate the large adjustment to the water continuum in the shortwave channels.
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Consequently, the highest altitude optical depths are not truly monochromatic, but exhibit
good integrated optical depths. The relatively large width of the AIRS Spectral Response

Function (SRF) results in negligible errors due to this averaging.

This large look-up table has been compressed using a Singular Value Decomposition
(SVD) method. The approximately 50 times compression achieved in KCARTA is lossy,
but the accuracy of the transmittances remains very high. kCARTA bridges the gap
between slow but accurate line-by-line codes, and fast but special purpose fast
transmittance codes. kCARTA is used to calculate the 48 profile transmittances we use
as regression data for the AIRS fast transmittance model. The computation time for these
transmittances is not a significant fraction of the time involved in creation of a new
fastmodel. However, the transmittance data files are very large, and the convolution of

these monochromatic transmittances with the AIRS SRFs is a time consuming process.
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Figure 4.2.7. Comparison of Observed - Calculated Brightness Temperatures with
and without Optical Depth Tuning
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4.2.5 Spectral Response Function Measurements and Modeling

Inaccuracies in the AIRS spectral response function directly impact the accuracy of the
AIRS-RTA, and consequently the accuracy of the AIRS retrieved products. The AIRS
SRFs are not Level 1 products, so it is appropriate to discuss the determination of the
SRF functions in this document. Complete knowledge of the AIRS SRFs derived solely
from ground calibration was not possible for two reasons; (1) small changes in the
alignment of the AIRS spectrometer/focal plane since launch have shifted the centroids of
the AIRS SRFs, and (2) the spectral location of fringes produced by the AIRS entrance
aperture filters are dependent on the thermal environment of AIRS in orbit. Both of these

effects are relatively small, but our requirements on SRF knowledge are quite stringent.

Since becoming operational in late August 2002, the AIRS channel centroids have
remained stable to within 1% of a channel Full Width at Half Maximum (FWHM). An
extreme solar event in late October 2003 led mission control to shut off the AIRS coolers
temporarily. When AIRS was switched back on in early November 2003, it required a
few weeks to cool down, and then be re-calibrated back to approximately the same
configuration as before the shutdown. While it was possible to adjust the channels back
to their pre-shutdown centroids, this required a small change to the operating
temperature, which resulted in a small relative shift of the fringes. The effects of this shift
are small enough to ignore for retrieval purposes, but may need to be accounted for when

looking at radiance biases for climate purposes.

Figure 4.2.8 shows the estimated change to the AIRS observed brightness temperatures
due to the change in fringe position in November 2003. The effects are negligible in most
channels, but not everywhere. The largest change is in 2200-cm™ region which affects the
CO sounding channels. The inset plot shows a blowup of this region, and the good
agreement between the model and observed change is evidence the fringe and SRF

models are fairly accurate.

While we can not measure the SRFs in orbit, we can measure the channel centroids to

fairly high accuracy. Careful analysis of AIRS data indicates the channel centroids drift
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back and forth by 0.5% of a FWHM (peak-to-peak) over each orbit. The exact reason for
this drift is uncertain, but it is probably related to solar heating effects. There is also a
long term drift, with the channels having drifted 0.3% of a FWHM in the first two years
since launch. This slow drift appears to be slowing and it may not be necessary to take
action to maintain the current channel centroids. If it is eventually deemed necessary, it
should be possible to again “dial in” the original channel centroids by adjusting the
temperature of the focal plane, but this would again cause another relative shift in the

fringe positions.
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Figure 4.2.8. Estimated Change to AIRS Observed Brightness Temperatures due to
the Offset in Fringe Position in November 2003

Figure 4.2.9 shows the drift in the AIRS channel centroids as a function of time as well as
latitude during the ascending (day-time) portion of Aqua’s orbit. The back-and-forth
shift of the centroids with each orbit shows up in this plot as the latitude dependence of

the shift. The data used for this plot does not extend to high latitudes, so the full range of
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the shift with latitude is not shown. The Version 4 AIRS-RTA and Level 1B data does
not account for this small orbital and long-term centroid drift. The effects of a 0.5% error
in the channel centroids is shown in Figure 4.2.10. It is possible to apply an approximate
correction for a small centroid error by interpolating the forward model radiances, but

that requires knowledge of the centroid position.
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Figure 4.2.9. Centroid Drift versus Time and Latitude, Ascending (Day) Orbit

4.2.6 AIRS-RTA Error Analysis

The following table contains rough estimates of the errors in the AIRS-RTA in units of
brightness temperature. They are separated into radiative transfer/spectroscopy errors and
SRF knowledge errors. In many cases these errors will be correlated, sometimes of
opposite sign. Consequently it is very difficult to properly combine the errors in Table
4.2.1 into a single AIRS-RTA error budget. In addition, most of these errors are highly

channel dependent. They have been estimated conservatively and represent upper bounds.
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Figure 4.2.10. Brightness Temperature Error for a 0.5% Error in Channel
Centroids

Table 4.2.1. AIRS-RTA Error Estimates

Radiative Errors Error (K) | Comment

Fast model fit 0.05 - 0.3 | Can be larger for individual profiles
Spectroscopy 0.2-0.6 Errors are more likely for water
Reflected thermal 0.0-0.2 Proportional to reflectivity

Solar 0.0-0.1 Can be much larger if p is off
Layering 0.05 Most channel have lower errors
Polychromatic approximation | 0.05 Most channel have lower errors
Aerosols 0.0-1 Dust can make it through cloud clearing
SRF Errors

Centroids 0.0-0.1 Possible to corrected for

Widths 0.0-0.2 Negligible for most channels
Fringes 0.0-0.2 Negligible for most channels

Wings 0.0-0.2 Negligible for most channels
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5. DESCRIPTION OF THE CORE RETRIEVAL
ALGORITHM

5.1 Microwave Initial Guess Algorithms
5.1.1 Profile Retrieval Algorithm

The microwave initial guess profile retrieval algorithm derives temperature, water vapor
and non-precipitating cloud liquid water profiles from AMSU-A/HSB brightness
temperatures. It is intended to provide the starting point for the AIRS cloud clearing and
retrieval. This is an iterative algorithm in which the profile increments are obtained by
the minimum-variance method, using weighting functions computed for the current
temperature and moisture profiles with the rapid transmittance algorithm described in

Section 4.1. A block diagram is shown in Figure 5.1.1.

The input vector of measured brightness temperatures is accompanied by an input
validity vector whose elements are either one or zero. This provides a way of handling

missing or bad data (for example, during the period after HSB failed on Feb. 5, 2003).
5.1.1.1 Preliminary Surface Type Classification

The surface classification algorithm is diagrammed in Figure 5.1.2. The classification
rules are from Grody, et al., (2000), and make use of discriminant functions that are
linear combinations of AMSU-A channels 1, 2, 3, and 15. If sea ice is indicated by the
classification algorithm, then its concentration fraction is estimated from a linear
operation on channels 1, 2, and 3. If the surface type is glacier or snow-covered land,
then the snow or ice fraction is estimated using AMSU-A channels 3 and 15. Parameters
of the surface brightness model (Equation 4.1.7) are assigned according to surface type as
in Table 5.1.1. A priori emissivities for the ice and snow types were estimated from
NOAA-15 and Aqua data. For land, €,(v) = 0.95 at all frequencies; for seawater, the
dielectric constant model of Ellison, et al., (2003) was used to compute the emissivity of

a flat surface viewed in the polarization of the AMSU-A and HSB radiometers.
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Figure 5.1.2. Surface Classification Algorithm

5.1.1.2 Atmospheric Moisture and Condensation Model

Measurements of brightness temperature at the HSB frequencies are a result of the
vertical profile of atmospheric opacity relative to temperature and hence do not by
themselves distinguish, at any given altitude, between opacity due to water vapor and
opacity due to liquid water. However, the physics of water vapor condensation add some
a priori information or constraints. Wilheit (1990) suggested that liquid water should be
placed at the altitudes where the measurements force relative humidity into saturation.

Although the water vapor profile is saturated within the cloudy part of the field of view, it
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is assumed here that the condensation process is not spatially resolved, hence the
threshold for condensation, denoted by Hy, may be less than 100%. The saturation vapor
pressure depends on temperature, and due to errors in the estimated temperature profile,
Hp may also be greater than 100%. Therefore, Hy is retrieved as an atmospheric
parameter, along with a profile H, which is a generalization of relative humidity to
encompass both vapor and liquid water, as illustrated in Figure 5.1.3. It is important to
note that because convergence is determined from the brightness temperature residuals,
which, in turn, are computed using the vapor and liquid mixing ratios (or column
densities), the role of H in this algorithm is only to introduce the a priori statistics and
constraints.

The average vapor mixing ratio in the field of view is
Py =pPs [ ramp( H, 10 ) - f(H) ]/ 100 (5.1.1)
where pg is the saturation value of mixing ratio,

{ x for x=c;
ramp(x,c) = { (5.1.2)
{ cexp(x/c-1) forx <c,
and

f(H) = ramp( H-Hyg, 6) (5.1.3)

Thus, the value of p, /pg lies between zero and H,/100. The liquid water mixing ratio

averaged over the field of view is assumed to be given by
pL = ¢, f(H) (5.1.4)
where ¢, is a coefficient equivalent to a liquid/air mass mixing ratio of 10” per percent.

The saturation vapor mixing ratio is computed from the temperature profile by the
formula of Liebe (1981). Saturation is calculated with respect to liquid water (by
extrapolation) even when the temperature is below 273 K. This model therefore allows
supercooled liquid water and water vapor greater than the saturation value with respect to

ice.
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Table 5.1.1. Surface-Model Parameters Fixed by Classification. (Go,1,2,, u. =@
priori standard deviation of Ty, Ty, T2, p,, Hr)

Surface type
0. Coastline
1.Land

2. Water

3. High-emissivity sea ice

4. Low-emissivity sea ice
5. Snow (high-frequency
scattering)

6. Glacier/snow (very low-

frequency scattering)
7. Snow (low-frequency
scattering)

S
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5.1.1.3 Estimation of Surface Brightness and Atmospheric Moisture

This part of the algorithm is based on retrieval methods described by Wilheit (1990),
Kuo, et al., (1994), Wilheit and Hutchison (1997), and Rosenkranz (2006). It uses the
four channels of HSB and channels 1, 2, 3 and 15 of AMSU-A. The HSB measurements

are weighted averages over 3x3 spatial arrays which approximate the AMSU-A field of

view. The H profile, H;, and four surface parameters T,, T,, T,, and p, are concatenated
into a vector Y . The parameter p,» When the surface type is either water or coastline,

determines the secant ratio p by
p = sec(O,)/sec(®) = 1 +ramp(p,, 0.02) (5.1.5)

The cost function to be minimized is

(Yest_Yo)T SY>1 (Yest_Yo) + (GObS_G -O’ )T (Se+Sf)>1 (Gobs_G -0O’ ) (5 1 6)

in which Y, is the estimate of Y, Y, is its a priori value and Sy is its covariance matrix

est

with respect to Y,, O, is a vector of the eight measured antenna temperatures, S, is their

obs
error covariance matrix (assumed to be diagonal), © ' is the tuning correction for sidelobe
effects and possible transmittance error, and®is a brightness temperature vector
computed from the current values of temperature, moisture, and surface brightness. S;is a

diagonal covariance matrix which approximately represents errors in © resulting from

errors in the temperature profile retrieval and tuning.

The estimate of Y is obtained by Newtonian iteration (see Rodgers, 1976), except that
Eyre’s (1989) method of damping is used to avoid large relative humidity increments,

because of the nonlinearity of the problem:
Yestn = Yestn_l - 6[ Yestn_l - Yo ] +9 SY WYT XY (517)

in which (Wy); = 00/0Y;, superscript T indicates transpose, and X is the solution vector

to

[Wy 8Sy Wy"+8,+8,1 Xy =0,,- 0- 07"+ W, 8[ Yoy, - Yo (5.1.8)

obs

where
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{ 1.0 if (Ojy,- ©j- © ") < 10 K for all channels 1, or n = 10;
0 ={ (5.1.9)

{ 0.1 otherwise.
Here O is a scalar rather than a matrix as in Eyre’s paper. The Jacobian matrix Wy is
computed for the state represented as Yes; | by application of the chain rule for

differentiation to the forward model equations. This is sometimes referred to as a

“tangent linear” method. For example, the elements of W, corresponding to H values are

a(a_G.[aK.apV+ apLJ

o~ lop,"on "7 oH (5.1.10)

in which G =00/0K where represents the opacity of the layer at the viewing angle,

and Y =9K/9pL, . G is equal to the integral over an atmospheric layer of the function
G(h) for which an expression is given by Schaerer and Wilheit (1979). The rapid
transmittance algorithm computes the coefficient y in the small-droplet (Rayleigh)

approximation. Hence, it is intended to be applied only to non-precipitating cloud

apv apL
situations. Differentiation of (5.1.1) and (5.1.4) yields AH and AH )

The elements of Sy corresponding to relative humidity were calculated from the TIGR
profile ensemble (Chedin, et al., 1985). For the surface, it is necessary to postulate
statistics based on physical plausibility and observed ranges of variation. The standard
deviations of parameters depend on surface type, and are listed in Table 5.1.1. The a
priori relative humidity is obtained from climatological databases (NCEP 50-year
reanalysis, Kistler, et al., 2001) of temperature and vapor mixing ratio, but limited to <
90%. Hence the initial cloud liquid-water profile always has very small values. The a
priori values of T, T, and T, are set to zero, and H; to 100, in all cases; the a priori value
of p, is assumed to be 0.02. For water surfaces, the parameters T,, T,, and p, are all
related to roughness, and therefore the a priori statistics assigned to them assume
correlation coefficients of 0.2. As indicated by the standard deviations in Table 5.1.1, at

most three of the four surface-roughness parameters are allowed to vary for any surface

type.
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After update of Y by (5.1.7-8), the water vapor and liquid water profiles are computed
from (5.1.1-4), and surface brightness is computed for both window and sounding

frequencies from (4.1.7), using the new estimate.
5.1.1.4 Estimation of Temperature Profile

The atmospheric temperature vector is augmented by Tg, which is considered to be
distinct from the air temperature near the surface. The measured ©'s used in the
temperature profile retrieval are channels 4-14 of AMSU-A. Given an existing estimate

Tes‘n-l’ the new estimated profile is to be determined from a vector O, of observed

obs

brightness temperatures. A cost function similar to (5.1.6), with Y replaced by T, is to be
minimized separately for the temperature profile. Hence, the retrieved profiles are not

influenced by statistical correlations between temperature and relative humidity.

Initially, the temperature profile, including surface temperature, is set to a
climatological profile T, which depends on latitude and season. The new, minimum-

variance estimate of T is obtained by Newtonian iteration (Rodgers, 1976, eq. 101):

Testn_l = TO + ST WTT XT (5.1.11)

where S; is the temperature covariance matrix and Xy is the solution vector to

[WyS: Wi 48,481 Xy =0- ©-07+ Wy [ Tegy - To ] (5.1.12)

obs™

The error covariance matrix (S.+S;) includes the effects of surface brightness uncertainty,

water vapor, liquid water, and instrument noise.

The elements of the Jacobian matrix W, corresponding to the atmospheric part of the

temperature vector are given by

00/0T =K +G dx/ 0T (5.1.13)

where K is equal to the temperature weighting function as defined by Schaerer and

Wilheit (1979) integrated over the given atmospheric layer, G = d0/dK | and 0K/ 9T jg
computed by the rapid transmittance algorithm. The second term on the right side of

(5.1.13) is a small correction to the temperature weighting function.
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The elements of W corresponding to T are obtained by partial differentiation of Eq.

(4.1.2):

87@)_1@ Q]

sky s

JT, T (5.1.14)

The dependence on Ty is nonlinear here because Qg is considered to be a known input
from the moisture algorithm. If the validity of a channel is zero, then the row of W,
corresponding to that channel is set to zeros. The dimensions of the matrix remain the

same.

The covariance of the temperature vector was computed from the TIGR ensemble
(Chedin, et al., 1985). T is assumed to have the same a priori mean and variance as the
air temperature near the surface, but the covariances of Ty with atmospheric temperatures

are assumed to be reduced by a factor of 0.9 from those of the surface air temperature.
5.1.1.5 Iteration Procedure and Convergence Tests

After the temperature profile is updated using (5.1.11-12), the algorithm returns to the
moisture and surface-brightness section for another iteration of (5.1.7-8), using weighting
functions computed for the updated temperature and moisture profiles. Convergence is
tested separately for the temperature channels and for the moisture/surface channels;
iteration of either part of the algorithm is suspended when one of the following conditions

is met : (1) the computed brightness temperature vector ® meets the closure criterion

N O, -0 -0
2[ obs; AT; 1]2 < NB
i=1 i (5.1.15)

where AT, is the instrument noise (not the total measurement error) on channel i and Nj is

the number of valid elements in O,ps; or (2) when successive computations of the left side
of (5.1.15) change by less than 1% of the right side, for the temperature channels, or 2%
for the moisture/surface channels; or (3) when the number of iterations exceeds a preset
limit, which is 12 for the temperature channels and 16 for the moisture/surface channels.
Typically, iteration of the temperature profile ceases after one or two iterations, but the

moisture profile often requires six or more iterations.
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5.1.1.6 Output Flags

Several error flags are produced by the microwave retrieval algorithm.  The
'mw_ret_code' may contain any of the following values (or sums of values if more than

one condition applies):
0: No error.

1: Moisture variables rejected. Test of residuals for channels AMSU1-8,15 and
HSB2-5.

2: Troposphere temperature profile rejected. Test of residuals for moisture-
related channels when integrated vapor > 6 mm or integrated cloud liquid > 0.1 mm, or

for channels AMSU3-8 under any conditions.
4: Integrated cloud liquid water > 0.5 mm.
8: Insufficient valid channels to do the retrieval.
32: Derived surface emissivity > 1 for any AMSU frequency.

64: Stratosphere temperature profile rejected. Test of residuals for channels

AMSU9-14.

In polar regions, error value 1 may occur without 2, and is then considered nonfatal; i.e.,

processing continues to the IR retrieval stages.

The Qual_MW_Only_Temp_Tropo flag is a summary of the bits in mw_ret_code that
affect the tropospheric temperature quality (2, 4, 8, 32) and can have values 0: usable, or

2: not usable.

The Qual_MW_Only_Temp_Strat flag is a summary of the bits in mw_ret_code that
affect the stratospheric temperature quality (8, 64) and can have values O: usable, or 2:

not usable.
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The Qual_MW_Only_H?2O flag is a summary of the bits in mw_ret_code that affect the
moisture variables (1, 4, 8, 32) and in addition tests the surface type when HSB is not
operating, because with AMSU alone, integrated vapor and liquid water can be retrieved,
but only over a water surface (ocean or coastline). Possible values are 0: moisture profiles

and integrals usable; 1: only integrals usable; 2: not usable.

If the mean square of brightness temperature residuals for the HSB channels is greater
than 64 (i.e., 8K rms per channel), then an ice-scattering flag (‘cloud_ice') is set at all
altitudes for which clouds are present and the temperature estimate is below 273 K. This

typically flags intense precipitation systems like thunderstorms.

5.1.2 Precipitation Flags, Rate Retrieval, and AMSU Corrections

The precipitation algorithm produces the following: (1) flags indicating possible
precipitation-induced perturbations impacting AMSU-A Channels 4, 5, 6, 7, and 8, (2)
estimates of corrections that may, at the user’s option, be applied to AMSU-A brightness
temperatures for channels 4, 5, 6, 7, and 8, to compensate for precipitation, if present, and
(3) a precipitation-rate retrieval (mm/h) for each ~50-km AMSU-A and ~15-km AMSU-
B spot which was tuned for mid-latitudes using all-season NEXRAD data. Inputs to the
algorithm are fields of AMSU-A data for channels 1-12 and 15, the data for all four HSB
channels, and topographical data. Figures 5.1.4 and 5.1.5 are block diagrams of the

algorithm.
5.1.2.1 Precipitation Flags

The objective of the flags for each of AMSU-A channels 4-8 is to alert users of this data
to the possibility that retrievals based on these microwave channels might be impacted by

precipitation. The four possible flag states are:

0 The magnitude of the detected precipitation perturbations (if any) are less than

0.5K

1 Small perturbations are present (nominally between 0.5 and 2 K), which are

approximately correctable
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2 Estimated AMSU-A precipitation-induced brightness temperature perturbations
for this channel may exceed 2 K in magnitude, so perturbation corrections are less

reliable

-1 It is unknown whether perturbations due to precipitation are present (e.g.,

surface elevation >2 km)

These perturbations are discussed further in section 5.1.2.4.
5.1.2.2 Perturbation Corrections

Perturbation corrections are estimated for AMSU Channels 4, 5, 6, 7, and 8. In addition,
for each AMSU-A beam position a precipitation-rate estimate (mm/h) is provided when
flag states O, 1, or 2 exist for AMSU channel 4 (52.8 GHz). Users of AMSU data for
temperature profile retrievals should use brightness temperatures flagged with 2 or -1
with caution, even if the suggested perturbation corrections are employed. These
perturbations are computed for AMSU-A channels 4-8 at ~50-km resolution using the
algorithm diagrammed in Figure 5.1.4 and discussed in Section 5.1.2.4. It should be
noted that 52.8-GHz brightness temperatures can suffer warm perturbations over ocean
due to low altitude absorption and emission by clouds or precipitation. Such warm
perturbations could be flagged and corrected as are the cold perturbations. The 23.8/31.4
GHz combination could be used to validate the locations of such excess absorption and

perturbations over ocean.

5.1.2.3 General Description of the Rain Rate Retrieval Algorithm

Accurate remote sensing of precipitation rate is challenging because the radiometric
signatures of irregularly formed hydrometeors can depend strongly on their distributions
in size, temperature, ice content and structure. As a result, all active and passive
microwave remote sensing methods rely on the statistical regularity of precipitation
characteristics. Experimental validation typically involves comparisons with rain gauges,
radar, and other sensors, each of which has its own limitations. Ultimately, precipitation
retrieval methods are best validated by comparing several independent sensing techniques
such as those to be tested with the Aqua mission and its co-orbiting satellites. For

example, CLOUDSAT will carry a 94-GHz precipitation imaging radar (G.L. Stephens et
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al, Bull. Amer. Meteor. Soc., vol. 83, no. 12, pp. 1771-1790, 2002). Relevant instruments
on Aqua include the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the
Moderate Resolution Imaging Spectrometer (MODIS), and AIRS itself.
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Figure 5.1.4. Precipitation-Rate Retrieval Algorithm, First Stage

The primary precipitation-rate retrieval products of AMSU/HSB are ~15- and ~50-km
resolution contiguous retrievals over the viewing positions of AMSU within 43° of nadir.
The two outermost 50-km viewing positions (six outermost for 15-km) on each side of
the swath are currently omitted due to their grazing angles. The algorithm architectures

for these two retrieval methods are presented below.
5.1.2.4 Elaboration of 15- and 50-km Retrieval Algorithms

The 15-km resolution precipitation-rate retrieval algorithm, summarized in Figures 5.1.4
and 5.1.5, begins with identification of potentially precipitating pixels. All 15-km pixels
with brightness temperatures at 183 £ 7 GHz that are below a threshold 77, are flagged as

potentially precipitating, where
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T, =0.667 (T, , - 248) + 252 + 6 cos 0 (5.1.16)

and where 0 is the satellite zenith angle. If, however, the spatially filtered brightness
temperature Ts; 4 at 53.6 GHz is below 249 K, then the brightness temperature at 183 + 3

GHz is compared instead to a different threshold 7;, where:
T;=2425+5cos 0 (5.1.17)

This spatial filter picks the warmest spot within a 7x7 array of AMSU-B pixels. The
183+3-GHz band is used to flag potential precipitation when the 183+7-GHz flag could
be erroneously set by low surface emissivity in very cold dry atmospheres, as indicated
by Ts;. These thresholds 7, and T are slightly colder than a saturated atmosphere would
be, therefore lower brightness temperatures imply the presence of a microwave-absorbing
cloud. If the locally filtered Ts;, is less than 242 K, then the pixel is assumed not to be

precipitating.

Within these flagged regions strong precipitation is generally characterized by cold
cloud-induced perturbations of the AMSU-A tropospheric temperature sounding channels
in the range 52.5-55.6 GHz. Examples of 183+7-GHz data and the corresponding cold
perturbations at 52.8 GHz are illustrated in Figures 5.1.6(a) and (c), respectively. These
50-km resolution 52.8-GHz perturbations AT}, s, ; are then used to infer the perturbations
AT 5,5 (see Figure 5.1.6(d)) that might have been observed at 52.8 GHz with 15-km
resolution had those perturbations been distributed spatially in the same way as the cold
perturbations observed at either 183 = 7 GHz or 183 + 3 GHz, the choice between these
two channels being the same as described above. This requires the bi-linearly
interpolated 50-km AMSU data to be resampled at the HSB beam positions. These

inferred 15-km perturbations are computed for five AMSU-A channels using:

ATis54 = (AT1s,183 / ATs0,183) ATs0,54 (5.1.18)
The perturbation AT7;s,s3 near 183 GHz is defined to be the difference between the

observed brightness temperature and the appropriate threshold given by (5.1.16) or
(5.1.17). The perturbation ATy s, near 54 GHz is defined to be the difference between

60



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

the limb-and-surface-corrected brightness temperature and its Laplacian-interpolated
brightness temperature based on those pixels surrounding the flagged region (Staelin and
Chen, IEEE Trans. Geosci. Remote Sensing, vol. 38, pp. 2232-2332, Sept. 2000). Limb
and surface-emissivity corrections to nadir for the five 54-GHz channels are produced by
neural networks for each channel; they operate on nine AMSU-A channels above 52

GHz, the cosine of the viewing angle ¢ from nadir, and a land-sea flag (see Figure 5.1.4).
They were trained on 7 orbits spaced over one year for latitudes up to +55°. Inferred 50-

and 15-km precipitation-induced perturbations at 52.8-GHz are shown in Figures 5.1.6
(c) and (d), respectively, for a frontal system. Such estimates of 15-km perturbations

near 54 GHz help characterize heavily precipitating small cells.
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Figure 5.1.5. Precipitation-Rate Retrieval Algorithm, Final Stage
Such inferred 15-km resolution perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5 GHz are

then combined with 1) the 183+1-, £3-, and +7-GHz 15-km HSB data, 2) the leading
three principal components characterizing the original five corrected 50-km AMSU-A
temperature brightness temperatures, and 3) two surface-insensitive principal components
that characterize the window channels at 23.8, 31.4, 50.3, and 89 GHz, plus the four HSB

channels. All 13 of these variables, plus the secant of the satellite zenith angle 6, are
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input to the neural net used for 15-km precipitation rate retrievals, as shown in Figure

5.1.5.
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Figure 5.1.6. Frontal System September 13, 2000, 0130 UTC; (a) brightness
temperature near 183+7 GHZ, (b) brightness temperatures near 183+3 GHz, (¢)
brightness temperature perturbations near 52.8 GHz, (d) inferred 15-km resolution
brightness temperature perturbations near 52.8 GHz

This network was trained to minimize the rms value of the difference between the
logarithms of the (AMSU+1 mm/h) and (NEXRAD+1 mm/h) retrievals; use of
logarithms prevented undue emphasis on the heaviest rain rates, which were roughly
three orders of magnitude greater than the lightest rates. Adding 1 mm/h prevented
undue emphasis on the lightest rates. NEXRAD precipitation retrievals with 2-km
resolution were smoothed to approximate Gaussian spatial averages that were centered on
and approximated the view-angle distorted 15- or 50-km antenna beam patterns. The
accuracy of NEXRAD precipitation observations are known to vary with distance, so
only points beyond 30 km but within 110 km of each NEXRAD radar site were included

in the data used to train and test the neural nets. Eighty different networks were trained
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using the Levenberg-Marquardt algorithm, each with different numbers of nodes and
water vapor principal components. A network with nearly the best performance over the
testing data set was chosen; it used two surface-blind water vapor principal components,
and only slightly better performance was achieved with five water vapor principal
components with increased surface sensitivity. The final network had one hidden layer
with 5 nodes that used the tanh sigmoid function. These neural networks are similar to
those described by Staelin and Chen (IEEE TGARS, vol. 38, no. 5, pp. 2232-2332, 2000).
The resulting 15-km resolution precipitation retrievals are then smoothed to yield 50-km

retrievals.

Figure 5.1.7. Precipitation Rates (mm/h) Observe September 13, 2000, 0130 UTC:
(a) 15-km resolution NEXRAD retrieval, (b) 15-km resolution AMSU retrieval, (¢)
50-km resolution NEXRAD retrieval, (d) 50-km resolution AMSU retrieval

The 15-km retrieval neural network was trained using precipitation data from the 38
orbits listed in Table 5.1.2. Each 15-km pixel flagged as potentially precipitating using
183 =+ 7 GHz or 183 £ 3 GHz brightness temperatures (see Equations 5.1.16 and 5.1.17)
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was used either for training, validation, or testing of the neural network. For these 38
orbits over the United States, 15,160 15-km pixels were flagged and considered suitable
for training, validation, and testing; half were used for training, and one-quarter were
used for each of validation and testing, where the validation pixels were used to
determine when the training of the neural network should cease. Based on the final
AMSU and NEXRAD 15-km retrievals, approximately 14 and 38 percent, respectively,
of the flagged 15-km pixels appear to have been precipitating less than 0.1 mm/h for the

test set.

Table 5.1.2. List of Rainy Orbits used for Training, Validation, and Testing

16 Oct 1999, 0030 UTC 30 Apr 2000, 1430 UTC
31 Oct 1999, 0130 UTC 14 May 2000, 0030 UTC
2 Nov 1999, 0045 UTC 19 May 2000, 0015 UTC
4 Dec 1999, 1445 UTC 19 May 2000, 0145 UTC
12 Dec 1999, 0100 UTC 20 May 2000, 0130 UTC
28 Jan 2000, 0200 UTC 25 May 2000, 0115 UTC
31 Jan 2000, 0045 UTC 10 Jun 2000, 0200 UTC
14 Feb 2000, 0045 UTC 16 Jun 2000, 0130 UTC
27 Feb 2000, 0045 UTC 30 Jun 2000,0115 UTC
11 Mar 2000, 0100 UTC 4 Jul 2000, 0115 UTC

17 Mar 2000, 0015 UTC 15 Jul 2000, 0030 UTC

17 Mar 2000, 0200 UTC 1 Aug 2000, 0045 UTC
19 Mar 2000, 0115 UTC 8 Aug 2000,0145 UTC
2 Apr 2000, 0100 UTC 18 Aug 2000, 0115 UTC
4 Apr 2000, 0015 UTC 23 Aug 2000, 1315 UTC
8 Apr 2000, 0030 UTC 23 Sep 2000, 1315 UTC
12 Apr 2000, 0045 UTC 5 Oct 2000, 0130 UTC

12 Apr 2000, 0215 UTC 6 Oct 2000,0100 UTC

5.1.2.5 Preliminary Validation of Retrieval Accuracy

This section presents three forms of validation for this initial precipitation-rate retrieval
algorithm: 1) representative quantitative comparisons of AMSU and NEXRAD
precipitation rate images, 2) quantitative comparisons of AMSU and NEXRAD retrievals
stratified by NEXRAD rain rate, and 3) representative precipitation images at more
extreme latitudes beyond the NEXRAD training zone. For the results reported in this
section, the threshold below which the retrieval algorithm used the 183+3-GHz channel
to flag potentially precipitating pixels was 248 K instead of 249 K as reported in the first
paragraph of 5.1.2.4. The threshold was changed from 248 K to 249 K in order to reduce

the probability of false precipitation around high-altitude regions.
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Figures 5.1.7(a) and (b) presents 15-km resolution precipitation retrieval images for 13
September 2000 obtained from NEXRAD and AMSU, respectively. On this occasion
both sensors yield rain rates over 50 mm/h at similar locations, and lower rain rates down
to 1 mm/h over similar areas. The revealed morphology is very similar, despite the fact
that AMSU is observing approximately 6 minutes before NEXRAD, and they are sensing
altitudes that may be separated by several kilometers; rain falling at a nominal rate of 10
m/s takes 10 minutes to fall 6 kilometers. Similar agreement is obtained at 50-km

resolution, as suggested in Figures 5.1.7(c) and (d).
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Figure 5.1.8. Comparison of H, for AMSU and NEXRAD Estimates of Rain Rate at
15-km Resolution
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Compansoen of AMSL and MEXRAD at 50-km Resolution
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Figure 5.1.9. Comparison of AMSU and NEXRAD Estimates of Rain Rate at 50-km

Resolution

Figure 5.1.8 shows the scatter between the 15-km AMSU and NEXRAD rain-rate
retrievals for the test pixels not used for training or validation. Figure 5.1.6 shows the
scatter between the 50-km AMSU and NEXRAD rain-rate retrievals over all points
flagged as precipitating. First, we note that the maximum rain rates retrieved by AMSU
and NEXRAD over all points where retrievals are possible at 15-km resolution were 159
and 270 mm/h, respectively, and that these maxima were 100 and 95 mm/h for 50-km
resolution. These rates can be compared to the rain rate distributions found in GATE
where more than 99 percent of all rain fell at rates less than 100 mm/h (Bell and Sushani,

J. Applied Meteorology, vol. 33, pp.1067-1078, Sept. 1994).

Next, it is interesting to see to what degree each sensor retrieves rain when the other does

not, and how much rain each sensor misses. For example, of the 73 NEXRAD 15-km
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rain rate retrievals in Figure 5.1.5 above 54 mm/h, none were found by AMSU to be
below 3 mm/h, and of the 61 AMSU 15-km retrievals above 45 mm/h, none were found
by NEXRAD to be below 16 mm/h. Also, of the 69 NEXRAD 50-km rain rate retrievals
in Figure 5.1.6 above 30 mm/h, none were found by AMSU to be below 5 mm/h, and of
the 102 AMSU 50-km retrievals above 16 mm/h, none were found by NEXRAD to be
below 10 mm/h.

The relative sensitivity of AMSU and NEXRAD to light and heavy rain can be seen from
Figure 5.1.9. In general, the figure suggests that AMSU is relatively less sensitive to
high rain rates. The risk of overestimating rain rate also appears to be limited. Only 3.3
percent of the total AMSU-derived rainfall was in areas where AMSU saw more than 1
mm/’h and NEXRAD saw less than 1 mm/h. Only 7.6 percent of the total NEXRAD-
derived rainfall was in areas where NEXRAD saw more than 1 mm/h and AMSU saw
less than 1 mm/h. These percentages can be compared to the total percentages of AMSU

and NEXRAD rain that fell at rates above 1 mm/h, which are 94 and 97, respectively.

Perhaps the most significant AMSU precipitation performance metric is the rms
difference between the NEXRAD and AMSU rain rate retrievals for those 15-km pixels
not used for training or validation; these are grouped by retrieved NEXRAD rain rates in
octaves. The central 26 AMSU-A scan angles and the central 78 AMSU-B scan angles
were included in these evaluations; only the outermost angles on each side were omitted.
The results are listed in Table 5.1.3 for both 15- and 50-km retrievals. The smoothing of
the 15-km NEXRAD and AMSU results to nominal 50-km resolution was consistent with
an AMSU-A Gaussian beamwidth of 3.3 degrees.

The rms agreement between these two very different precipitation-rate sensors appears
surprisingly good, particularly since a single AMSU neural network is used over all
seasons and latitudes. The 3-GHz radar retrievals respond most strongly to the largest
hydrometeors, especially those below the bright band near the freezing level, while
AMSU interacts with the general population of hydrometeors in the top few kilometers of
the precipitation cell, which may lie several kilometers above the freezing level. Much of

the agreement between AMSU and NEXRAD rain-rate retrievals must therefore result
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from the statistical consistency of the relations between rain rate and its various
electromagnetic signatures. It is difficult to say how much of the observed discrepancy is
due to each sensor, or to say how well each correlates with precipitation reaching the

ground.

This study furthermore provided an opportunity for evaluation of radar data. The rms
discrepancies between AMSU and NEXRAD retrievals were separately calculated over
all points at ranges from 110 to 230 km from any radar. For NEXRAD precipitation rates
below 16 mm/h, these rms discrepancies were approximately 40 percent greater than
those computed for test points at 30-110 km range. At rain rates greater than 16 mm/h,
the accuracies beyond 110 km were more comparable. Most points in the eastern U.S.

are more than 110 km from any NEXRAD radar site.

Table 5.1.3. RMS AMSU/NEXRAD Discrepancies (mm/h)

NEXRAD 15-km 50-km
range resolution resolution
<0.5 mm/h 1.0 0.5
0.5-1 mm/h 2.0 0.9
1-2 mm/h 23 1.1
2-4 mm/h 2.7 1.8
4-8 mm/h 35 3.2
8-16 mm/h 6.9 6.6
16-32 mm/h 19.0 12.9
>32 mm/h 42.9 22.1

5.1.2.6 Global Retrievals of Rain and Snow

Figure 5.1.10 illustrates precipitation-rate retrievals at points around the globe where
radar confirmation data is scarce. In each case the results are plausible and
meteorologically revealing. Figure 5.1.10(a) shows precipitation retrievals in the tropics
over a mix of land and sea, while Figure 5.1.10(b) shows a more intense tropical event.
Figure 5.1.10(c) illustrates strong precipitation near 72-74° N, again over both land and
sea. Finally, Figure 5.1.10(d) illustrates the March 5, 2001, New England snowstorm that
deposited roughly a foot of snow within a few hours. This accumulation is somewhat
greater than is indicated by the rain rates of ~1.2 mm/h that were inferred by the same

algorithm. This applicability of the algorithm to snowfall rate should be expected
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because the observed radio emission originates exclusively at high altitudes. Whether the
hydrometeors are rain or snow upon impact depends only on air temperatures near the
surface, far below those altitudes being probed. One of the principal Aqua validation
activities will involve testing and tuning of the precipitation retrievals for climates not
adequately represented in the NEXRAD training data set. For example, polar stratiform
precipitation is expected to exhibit relatively weaker radiometric signatures in winter

when the temperature lapse rates are lower.
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Figure 5.1.10. AMSU Precipitation Rate Retrievals (mm/h) with 15-km Resolution:
(a) Philippines on 16 April 2000, (b) Indochina on 5 July 2000, (¢) Canada on 2
August 2000, and (d) New England snowstorm on 5 March 2000

5.1.2.7 Conclusions
These evaluations of rain rate with 15- and 50-km nominal resolution suggest that

AIRS/AMSU/HSB rain rate retrievals will usefully supplement other global precipitation
data sets over both land and sea at rates up to 100 mm/h or more, and that an early

scientific objective of the Aqua program should be to reconcile and inter-calibrate these
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various approaches. They also suggest that most 15-km spots precipitating more than 1
mm/h should be readily identifiable. It also appears likely that further training and
validation would be helpful for atmospheric conditions remote from those occurring in

the eastern United States.
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5.2 Cloud Clearing

5.2.1 Overview

Cloud clearing refers to the process of determination of the clear-column radiances for
AIRS channel i, ﬁi, which represent what channel i1 “would have observed” if the entire
scene were cloud free. In the context of AIRS Version 4.0, the entire scene is the AMSU
A Field of Regard (FOR), in which observations in a 3 x 3 array of AIRS Fields of View
(FOV’s) are present. Observations in the 3 x 3 array of AIRS FOV’s are taken at 3
different zenith angles. The cloud-clearing methodology attributes differences in these
radiances to differing cloud conditions within the FOR. Therefore, a process referred to
as local angle adjustment is applied to these observed radiances, channel by channel, to

generate angle adjusted radiances R;y, representative of the radiances AIRS channel i

would have observed in FOV k if the observation were taken at the satellite zenith angle
of the center FOV within the FOR, rather than at its actual satellite zenith angle. Details

of the methodology to perform this adjustment are given in Section 5.2.2.

The basic inputs to the cloud-clearing process are R;y and an (nth) estimate of the

surface and atmospheric state. Auxiliary fields needed are the AIRS channel-tuning
coefficients, channel noise file, and RTA coefficients. These are used together to

generate the nth estimate of cloud-clearing coefficients nf{n) which can be used to

determine Rgn). Radiances in some channels are not sensitive to clouds in the Field of

View, and for these channels, it is better to average the observations R;y over the 9
fields of view to obtain lign). Other important parameters obtained in the cloud-clearing

process are the channel-noise amplification factor, A(n), the effective channel-noise

amplification factor, Aggf) , and the clear-column-radiance noise covariance matrix, I\A/Ifjn ).

Figure 5.2.1 gives a flow diagram showing the basic steps involved in the cloud-clearing

process. Details are given in Section 5.2.4.
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Figure 5.2.1. Cloud Clearing Overview

5.2.2 Local Angle Adjustment of AIRS Observations

The cloud-clearing algorithm assumes that the observed AIRS radiances in footprints
falling within the composite AMSU-A retrieval footprint differ only because of different
cloud characteristics within the footprints. Other parameters, such as the viewing angle,

are assumed constant over the 3 x 3 array of AIRS footprints being used. This means the
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radiances in the 9 AIRS footprints at 3 different zenith angles (@) must be adjusted to

what they would have been if they observed otherwise the same scene but at a common

central zenith angle (@) before cloud clearing is attempted. The procedure used to

achieve this adjustment is described below.

The coefficients of the correction are based on synthetic regression, a process in which
regression coefficients are generated using radiances that are simulated for a range of
cloud conditions and profiles that cover the expected atmospheric range. AIRS radiances
are calculated for each of the 90 AIRS viewing angles and AMSU-A radiances are
calculated for the AMSU-A footprint viewing angle. Noise is added, but care must be
taken that it be treated properly. The radiances being calculated are an attempt to simulate
the measurements that would have been observed if the viewing angles were different.
Thus all other factors, including the noise, do not change with angle. What this means for
the simulation is that the added noise is random over the set of profiles and for each
channel, but is constant over the viewing angle. In other words, once the noise is
determined for a channel and a profile, that same noise is used for all 90 AIRS viewing
angles. It must only be constant over the 3 viewing angles that cover each AMSU-A

footprint, but it is easier to keep it constant over all 90 spots.

Let prof be the profile index, fp be the footprint number, vbe channel frequency and
be the zenith angle, respectively; the noisy radiance for a given profile, footprint,
channel and local zenith angle is:

R(prof, fp,v, @) = R, (prof, fp, v, ®) + &(prof, fp, V) (5.2.1)

where R(prof,fp,v,@) is the noise free radiance, and &(prof,fp,Vv) is the noise for the

particular profile, spot, and channel. The consequence of not treating the noise properly is
to cause large errors in the predictants used to generate the coefficients, with a
corresponding adverse effect on the resulting coefficients. Many angle adjustment

procedures currently in use do not properly handle the instrumental noise.

In the following discussion, the term "weighting function" is used to denote the

contribution function that describes the region of the atmosphere being viewed by a
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particular channel. The observed radiance for a particular channel changes with angle in
two ways. One is that the weighting function peaks in a higher region of the atmosphere
when the angle moves away from nadir. The other is that the weighting function becomes
slightly narrower. This occurs because, to a first approximation, the majority contribution
to the observed radiance for a particular channel arises within a confined slab of the
atmosphere. When viewed at an angle, the slab is thinner in atmospheric height. For the
small angles under consideration, the second effect is small. If the weighting function
peak for a channel is raised slightly in the atmosphere, there is a linear combination of the
given channel with nearby channels that, for a given profile, provides the same radiance
at the observed angle as the given channel would have provided if observed at nadir. The

correction procedure employed here seeks to find and use that linear combination.

For a given channel, regression coefficients are generated that give the change in radiance
as a linear function of observed radiances. Radiances are used rather than brightness
temperatures to avoid Planck equation calculations. The exponentiation within the Planck
equation is computationally intensive. Furthermore, an error can result if a low
temperature coupled with noise causes the calculated value to go negative. For daytime
conditions, the predictors are principal component scores of the eigenvectors of the
radiances plus the difference of cosines of the solar zenith angles between the AIRS and
AMSU-A observations. For nighttime conditions the predictors are the principal
component scores of the eigenvectors of the radiances. The additional term for daytime
conditions is proportional to the change in solar energy falling on a horizontal surface due

to the change in viewing angle. This term is important for the shortwave channels.

In applying the angle correction, the first step is to normalize the observed radiances by
dividing by the instrumental noise for the given channel. The next step is to generate the
eigenvectors of the predictors. In practice, the regression uses the 45 principal component
scores for the 45 eigenvectors with the highest eigenvalues as predictors. Use of the
eigenvectors prevents the solution from becoming singular. For daytime, the matrix of

predictors is given by:
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R, (prof, fp,v,®)
e(Vv)

Xday = { + (cos(d) — cos(Peen )):|XE (5.2.2)

for nighttime, the matrix of predictors is given by:

R, (prof, fp,V,(P)}(E (5.2.3)

Xnight = |: e(v)

where E denotes the matrix of eigenvectors and gv)denotes the instrumental noise for the

channel. Once the predictors are available, the regression is given by:
A(v,9)=C,(v,9)+C (v,0) X (9) (5.2.4)

where E(V,(p) denotes the vector of regression coefficients.

The vector of adjusted radiances may then be computed:
R (v’(p)angle_ adjusted — R (V’(p)obs + A(V,(p) (5.2.5)
where ﬁ(v,(p)obs denotes the vector of original measured radiances.

Separate coefficients are generated for day and night. Although the daytime coefficients
may be used to calculate the adjusted radiances at night, the errors that are generated are
of the same magnitude as those produced during the day and thus larger than they would
otherwise be. While the errors in the daytime corrections are small, nighttime corrections
produced with nighttime coefficients are much more accurate. This is an important
consideration because in daylight, the visible channels can be used to help cloud
detection. At night, cloud detection has to rely on relationships between channels at
different wavelengths. The increased accuracy for the short wavelength channels is an

important factor in the ability to detect clouds.
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5.2.3 Principles of Cloud Clearing

Infrared observations at most wavelengths are affected by clouds in the field-of-view.
Three basic approaches used for accounting for effects of clouds in satellite remote
sensing are: 1) identify clear areas and only perform retrievals in those areas, with no
cloud correction needed; 2) use channel observations in adjacent potentially partially
cloudy scenes to reconstruct what the channel radiances would have been if the scenes
were clear, and use these reconstructed observations to determine geophysical
parameters; and 3) determine both surface and atmospheric geophysical parameters, as
well as cloud properties, from the radiance observations themselves. An example of the
first approach is given by Cuomo, et al., (1993). Eyre (1989a, 1990) has used the third
approach in simulation by assuming an unknown homogeneous amount of black clouds at
an unknown pressure, and attempted it with real TOVS data as well (Eyre, 1989b). Our
approach, like that used in Susskind (1993), is of the second type and is an extension of
that used by Smith (1968), Chahine (1974), and Chahine (1977). This approach utilizes

satellite observed radiances, R;, corresponding to channel i and field-of-view k, made

over adjacent fields-of-view. In this approach, there is no need to model the radiative and
reflective properties of the clouds. The only assumption made is that the fields-of-view

are homogeneous except for the amount of cloud cover in K different cloud formations in
each field-of-view. liL the radiance which would be observed if the entire field of view
were clear, and R; ; ¢, the radiance which would be observed if the entire field of view

were covered by cloud formation ¢, are therefore assumed to have the same respective
values in each field-of-view. If the observed radiances in each field-of-view are
different, the differences in the observed radiances are then attributed to the differences in

0L » the fractional cloudiness for cloud formation ¢ in field-of-view k. In the following

discussion, R;y represents the observed channel i radiance in FOV k after it has been

adjusted to what it would have been if it were observed at the central zenith angle of the

FOR, as shown in Section 5.2.2.
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Using the assumption described above, Chahine (1977) showed that the reconstructed
clear-column radiance for channel i, liL can be written as a linear combination of the

measured radiances in K+1 fields-of-view, R;;-R;k,q, according to

Ri =Rj;+m [ Rij—Rig |+ [Ri,l —Rj (k+2)-k J +-Mg [Rig-Riz]  (52.6)
where 1 --- Nk are unknown channel independent constants, and K+1 fields-of-view
(FOV's) are needed to solve for K cloud formations (with K lineaerly independent values

of n).

Cloud formations should be distinguished from cloud types. For example, if three fields
of view are considered, and two cloud types exist, with cloud top pressures at 300 mb and
700 mb, and the respective cloud fractions as seen from above are (10%, 20%), (20%,
40%), and (30%, 60%) in each field of view, then only a single cloud formation exists
with cloud fractions of 30%, 60%, and 90% in each field of view respectively. If instead,
the third field of view had cloud fractions of 30% and 65%, then 5% of a second cloud
formation exists in the third field of view only. The above discussion applies only to
cases in which the upper cloud type is opaque, and a portion of the scene, as observed
from above, corresponds to cloud type 1, cloud type 2, or the surface. If the upper cloud
type is semi-transparent, then a portion of the scene can correspond to cloud type 1
overlaying the surface, cloud type 1 overlaying cloud type 2, cloud type 2, and the
surface. In such a case, three cloud formations will exist in general even if the relative

amounts of each cloud type are as initially stated above.

In Chahine (1977), the fields-of-view are ordered such that FOV 1 is the clearest field-of-
view based on observations in the 11 ym window (the field-of-view with the highest 11
pm radiances is assumed to be FOV 1) and FOV K+1 is the cloudiest. Thus m;
multiplies the largest radiance differences and Mg the smallest. Once m;---Mg are
determined, Equation (5.2.6) is used to produce the reconstructed clear column radiances
for all channels used in the retrieval process. The reconstructed clear column radiances
are then used when solving for the geophysical parameters. This approach has been

successfully applied to fields-of-view, assuming one cloud formation, in the analysis of
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HIRS2/MSU operational sounding data by several authors (McMillin and Dean, (1982),
Susskind, et al., (1984), Susskind and Reuter (1985a) and Chahine and Susskind (1989))
and is the method used by NOAA/NESDIS in production of their clear column radiances
used in generation of operational HIRS2/MSU retrievals (McMillin and Dean, 1982).
Chahine and Susskind (1989) show that retrieval accuracy using this approach, verified
by co-located radiosondes, does not degrade appreciably with increasing cloud cover, for
retrieved cloud fractions of up to 80%. Susskind and Reuter (1985b) have performed
simulations with two cloud formations and three fields-of-view for the AMTS instrument,
an earlier version of AIRS (Chahine, et al., 1984), used in conjunction with MSU.
Susskind, et al., (2003) describe an improved cloud clearing methodology for use with
AIRS/AMSU data and show, via simulation, that sounding accuracy does not degrade
appreciably with increasing cloudiness up to 80% effective fractional cloud cover. The
methodology we use to analyze AIRS/AMSU data is identical to that of Susskind, et al.
,(2003) and is described in detail in Section 5.2.4.

5.2.4 Cloud Clearing Methodology
As in Susskind et al. (2003), one sounding is generated for the 3x3 array of AIRS footprints

(FOV’s) within a given AMSU A footprint (FOR). The basic equation is analogous to
Equation (5.2.6), but we have found it is advantageous (as suggested by L. McMillin) to

extrapolate the radiances in the K fields of view according to a similar equation of the form

A

K

Ri =R avG + X Nk(Rj avG —Rix) (5.2.7)
k=1

where R; pyG 1s the average radiance of all K fields of view. Optimal values of m; will

give true values of lii up to instrumental noise effects. Only K-1 linearly independent
values of 1 are obtainable from Equation (5.2.7), to the extent that K-1 cloud formations

exist within the FOR.

Susskind, et al., (1998) used the 9 AIRS spots within an AMSU A footprint to construct 3

fields of view used to determine 2 values of 1 to be used in Equation 5.2.6. Field of

view 1 was comprised of the average of the observations in the 3 warmest spots in an 8

um window channel, and field of view 3 was the average of 3 coldest spots. We now use
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all radiances in all spots separately and determine 9 values of M, up to 8 of which are
linearly independent. Given 1y, clear column radiances for all channels can be obtained

from Equation 5.2.7. As in Susskind, et al., (1998), we determine the values n from
observations in a selected set of I(= 44) cloud filtering channels which are primarily in
between lines in the 15 um CO, band with some additional channels in the long wave and

short wave window regions. If, for each channel i, one substitutes an estimated value of
the expected clear column radiance for channel i, R; ci g, for lii in Equation 5.2.7, this

gives I (44) equations for K (9) unknowns. The unconstrained weighted least square

solution to this multilinear problem is given by
_ m—1 -1 mr—1
NKxl = [ AR'N AR] Ak AR'N™' AR R (5.2.8)

where AR is a IxK matrix with AR; y =Ry — Rk, ARcrr is an Ix1 matrix given by

AR; c1rR =RjcLr —Rj AvG > and N is an IXI channel noise covariance matrix.

The key to the accurate determination of m is obtaining the best values of AR; iR,

along with an accurate treatment of the noise covariance matrix N. As in Susskind, et al.,

(1998), we assume the noise in channel i used to determine m is dominated by errors in
AR . The values of AR; which we use to determine and R;) are iterative
i, CLR i, CLR n i

and are computed based on the current best estimate of all relevant surface and

atmospheric properties.

For optimal results, it is important for the estimates of geophysical parameters used to

obtain AR; cpr to be unbiased over large regions of the atmosphere. For example, if the
estimated temperature profile were uniformly too warm, values of AR; cj r computed
from this profile would all be too high and incorrect values of 1M, would be obtained

which would reconstruct too high values of lii. To avoid this, we make sure that the

profile used to estimate AR; ¢ R is consistent with observations in all AMSU A (and

HSB) channels, thus insuring an unbiased temperature and moisture profile over coarse

layers in the atmosphere. It would be a mistake to use a GCM generated analysis or a
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forecast field directly to compute R; cj r because this field, while potentially accurate,

could be biased in the vertical.

The iterative methodology to determine clear column radiances consists of four passes to
determine n" (n =1, 2, 3, 4), using four sets of conditions, described later, to compute
RRCLR , in which RRCLR and hence M", become increasingly more accurate for each
iteration. Each set of conditions has its own N", reflecting expected errors in
RECLR —R; . The diagonal term of the noise covariance matrix is modeled according

to

2 2
NI = NEAN? + oR; ST | + IR gen
JT, dey. Vi

_ 2 )
dR; JR; n
+ 1 Spsi] +{a L 3T (p) }
2

| 9py, T(p)

2 2

LS 8q(p)’ L0.12(9B L x.2( 9B
aq(p) ©dT Tldr
7(1 p q i,CLR i,CLR

q

(5.2.9a)

where NEAN; is the channel 1 instrumental noise and the next 5 terms are contributions
to errors in the computed value R; cpr resulting from errors in estimated surface skin
temperature, surface spectral emissivity, surface spectral bi-directional reflectance of

solar radiation, and temperature and moisture profile respectively. Two additional

sources of radiance uncertainty are included in Equation 5.2.9a, representative of the

physics error estimate, Nii (see Section 5.4.11.3), and an additional radiance uncertainty

term. Both terms (Nii and 0.1) are in brightness temperature units. The off diagonal

term of the noise covariance matrix is given by
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n aRl BRJ n JR. E)RJ 0 oe.n
n_ ST ) + R T (en gen |4 . 5.2.9b
79T, om, (G ey, ey v ) ©290)

The partial derivatives in Equations 5.2.9a and 5.2.9b are determined empirically by
computing the radiance using the current estimate of each parameter and recomputing it
after a small change in that parameter. In Susskind, et al., (1998), the uncertainties, such

as 8Tsn , are specified so as to be indicative of the expected errors for that parameter in

pass n. We now predict these errors on a profile-by-profile basis for each pass by
propagation of expected sources of error through the retrieval process in a manner
described in Section 5.4.9. A principal source of retrieval error arises from errors in the

reconstructed clear column radiances.
5.2.4.1 Selection of Optimal Fields of View

The effects of instrumental noise on the clear column radiances will in general be
amplified from single spot noise values because the clear column radiances are expressed
as a linear combination of the observations in different fields of view. If there were no

other sources of error, the diagonal term of the clear column radiance noise covariance

matrix in a given pass, referring to the error in lii obtained by Equation (5.2.7), would be

[ 8R -8R’] jj= NEAN? - A(ny )’ (5.2.10)

where A(nk) is the noise amplification factor, given by
2 /2

911 9
Alng)=| X (5'{1+ )y nk']—nk : (5.2.11)
k=1 k’=1

A(nk) is approximately equal to [anz} 2 pecause the first term, containing the

factor 1/9, is small. It is desirable to find an accurate expression for clear column
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radiance which minimizes A(nk). We can minimize A(nk) by expressing Equation
(5.2.7) in terms of radiances in an optimal set of fields of view, given by linear

combinations of the original set. The optimal A(nk) can be found by transforming the

original contrast terms ARy to a new set, ARE , according to

AR} =Y U AR (5.2.12)
k/

where U is the unitary transformation which diagonalizes AR’ - N~ AR
[ U’ (aR"-N7T AR} U} =M Sy g (5.2.13)
This is equivalent to having originally selected fields of view in which

Ry =Rpvg - E«Uk,k’ (Ravg —Ry’)- (5.2.14)

One eigenvalue Ay is always zero because only 8 linearly independent values of AR;y

exist. In transformed space,

K
A max T
Ri=Rjavg+ 2 G ARy (5.2.15)
k=1
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and the solution for { is given by
Ge=2i!(ART N AR (5.2.16)

where ARiTk is the transpose of ARiTk .

It is apparent that large eigenvalues Ay imply low values of {; while small eigenvalues
imply large (and undesirable) values of (. The eigenvalues themselves indicate the
degrees of freedom in the radiances in the different fields of view corresponding to the
different number of cloud formations. Typical cloud formation eigenvalues are the order
of 1000. We discard all eigenvalues less than 25 and set K ,, accordingly, with the
constraint that K., is never greater than 4. We also do not include any eigenfunction
whose eigenvalue is less than the uncertainty in {;, given later in Equation (5.2.19).

Discarding low eigenvalues reduces the noise amplification factor by suppressing noise

in the solution for 1, according to

K max

M= 2 Ugr G (5.2.17)
K=

resulting in lower values of n. The values of My obtained from Equation 5.2.17 are

then used in Equation 5.2.7 to give lii.

Under certain pathological conditions, one or more cloud formations may not result in

significant eigenvalues of AR’NT'AR and cannot be solved for, resulting in a poor
solution. The most obvious example of this is a single cloud formation with a constant
cloud fraction in each field of view. Here AR is not influenced by cloud contrast and is
comprised of noise only. The most common examples of this are all fields of view are
clear, which is a benign case, or all fields of view are overcast, which is a case which
must be otherwise identified and rejected. Likewise, with two cloud formations, if the
lower cloud deck is overcast, a proper reconstruction of the clear column radiances

cannot be obtained. In this case, if the cloud fraction of the upper cloud in field of view k
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is 04y , then the lower cloud fraction as seen from above, Oy , is 1—0(j . In general, if

0o = A+Boy, for all k, then cloud formation 2 will have a zero eigenvalue of

AR'N'AR up to noise effects. The benign case occurs when A=0, corresponding to a

truly single cloud formation.
5.2.4.2 Contribution of Clouds to the Retrieval Channel Noise Covariance Matrix

The physically based retrieval methodology described in section 5.4 requires a channel

noise covariance matrix M representing channel correlated errors in the terms

(ﬁi - an) and (IA{ i Rjn) where R{" is the radiance computed for channel i based on

the mth iterative solution. The channel noise covariance matrix is the sum of two parts,

resulting from noise in the reconstructed clear column radiances OR; with noise

covariance M, and noise in the computed radiances SR|" due to uncertainty in the

parameters assumed known, with noise covariance M .

Mij = [ SﬁSﬁ'} ij is the expected noise covariance matrix for the channel clear column

radiances. The noise in lii obtained from Equation (5.2.7) has two parts, arising from

instrumental noise NEAN;, and from cloud clearing errors coming from errors in { .
Errors in { will cause channel correlated clear column radiance errors. Clear column

radiances for those channels affected by clouds will have this additional error due to

errors in {. For the AIRS instrument, the channel noise is spectrally uncorrelated, giving

the final result
[ 8R 8R’];; =NEAN? A (n, )’ + [ARTBC SQ'ART'} L (5.2.18)
and

[3R8R ] =[ ARTBLOLART |; (5.2.18b)
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where 0L 8L’ is the error covariance of {. If N, as defined in Equation (5.2.9), is indeed
representative of the noise in the determination of 1, then it can be shown (see Equation

5.4.17) that
[ 880 ] = [ ART'N‘IART} R Wt (5.2.19)

In the special case for which we determine that channel i does not "see" the clouds (i.e.,
stratospheric sounding channels or tropospheric sounding channels peaking significantly
above the highest cloud top), the clear column radiance is best described as the average
radiance in all fields of view. For these channels, the scene appears to be clear and we

CLR for

can define effective values of n clear” channels as nkCLR =0 for all k. For

these channels (see Equation 5.2.11),

1
A(nELR) =3 (5.2.20)
which is a noise reducer. For “clear” channel i, one can write

where j is any other channel and 8ij is the Kronecker delta function.

In a given FOR, a channel to be determined not to see clouds according to our algorithm,
it must be included in a list showing a 95% probability of not seeing a cloud, which is
pre-computed as a function of cloud top pressure and zenith angle. In addition, the
standard deviation of the radiances in the 3x3 array of AIRS spots must be less than twice

the channel noise. Otherwise, it is assumed to channel sees clouds in this FOR.

For channels which see clouds, the clear column noise covariance can now be expressed as

K
9 2 max T TaA—1
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Errors in clear column radiances can be larger than predicted by Equation (5.2.22),

however, because x;l is just an estimate of (8(8¢’) Moreover, Equation (5.2.22) does

kk”"
not take into account contributions to the noise covariance matrix arising from higher

components of { not solved for (k > K,,,,) as well as fitting errors due to a poor first guess.

max

Another estimate of the error in the { parameters can be computed using weighted radiance
residuals in the channels used in the cloud clearing retrieval, R;cpr —ﬁi. If we take
RicLR — ﬁi as the uncertainty of AR, ¢ , then using Equation (5.2.16), we estimate the
uncertainty in {; according to
A A 1 2 2 A \2
[ 8888 ] = [KJ §(AR{1 Ni') (Ricir ~Ri) (5.2.23)
which we evaluate for all significant functions k with A, > 1073, This includes eigen

functions with A < 25 and therefore not included in the solution for lii. For values of

k <K pax» We take

(8080 ] 1= MAX[xk‘l,[ e kk} (5.2.24)

and for values of k between K, and K, (significant eigenvalues A} > 10_3) we set

[ 8688 ] = [ 8 5&'} Kk (5.2.25)
and write

Kig o o (5.2.26)
=1

One can think of Equation (5.2.26) in terms of a different effective noise amplification

factor A; ¢ for each channel i

M;; = NEAN{? A% o (5.2.27)

where
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1/2

2
kii‘g ARII( [ SCSC,] kk

> (5.2.28)
k=1 NEAI\I1

Ajeff = A(ﬂk)2 +

The channel effective noise amplification factor is largest for channels which see the

surface and have potentially large values of the scene contrast AR;y. We find it

convenient to define an effective noise amplification factor relevant to the surface channel

retrieval step as the RMS value of A; ¢ over all NSURF infrared channels used in the

surface retrieval step

: NSERF 1" 5.2.29
Aot = ——— A; . 2.
off “NSURF| 2 ‘beff ( )
Very large values of A.g can arise when 8C8(" is large (Agg is sometimes 100 or
more) and indicate a large uncertainty in the determination of the clear column radiances.
These large uncertainties are sometimes caused by hidden, or nearly hidden cloud

formations, and often correlate with poor solutions. Alternatively, Ay can be large if

there are significant errors in the geophysical parameters used to compute R i.CLR €ven if

the cloud conditions are relatively simple.

5.3 AIRS Post-Launch First Guess Regression Procedure

The NOAA/NESDIS eigenvector regression product derives temperature, moisture,
ozone profiles, skin temperature, and emissivity from the AIRS cloud-cleared radiances
and is used as a first guess for the physical retrieval. In general, a regression is derived
from a "training dataset” that are geophysical states compiled from radiosonde profiles,
satellite retrieved profiles, a numerical weather prediction model, or climatologies, or
some combination of the above. Satellite radiances corresponding to the geophysical
training dataset are used to derived a linear statistical relationship between radiances and
the geophysical state. A regression provides fast and accurate initial guesses for
temperature, moisture, and ozone profiles as well as surface parameters (Goldberg, et al.,

2003).
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definition of additional symbols
in post-launch eigenvector algorithm
symbol description
n channel number, AIRS original channel index, n = 1,2378
M, number of channels used in eigenvector computation
M. number of channels used in emissivity computation
m channel sub-set index number
n{m) sub-set of AIRS channels used in regression
NEAN,,(m) | Noise Equivalent Difference Radiance for AIRS channel n
Ro(my Radiance (observations) for channel n, case j
AB,, 5 Argument of Radiance
i geophysical parameter index
L vertical grid index, L = 1,100
X geophysical parameter, e.q. T(L),q(L), etc for case j
and geophysical index i
j index for a scene of radiances and/or geophysical parameters
19 AIRS view (scan) angle, —48.95° < a < 48.95°
v index for the view angle regime (see Table 5.1)
g ensemble of cases (7 =1, .J.) used for training of EOF’s
Jo(v, L) ensemble of cases (7 =1, .J.(v, L)) used for training of profile regressions
for view angle regime = v and atmospheric layer L
J (1) ensemble of cases (7 = 1,.J.) used for training of emissgivity regression
for surtace type =1
k Figenvalue index (k=1 is largest (most significant) eigenvalue)
Ak Eigenvalue
B .. Eigenvector for channel n{m)
v view angle index
P¥(k,q) Predictor array at view angle v for a single scene 7,
contains k elements of PCS’s and 2 additional predictors
A7k regression coefficients at view angle v

Eigenvector regression for atmospheric sounding was first demonstrated by Smith and
Woolf (1976). Eigenvectors are also commonly referred to as empirical orthogonal
functions (EOF’s) in the literature. Because of the large number of channels measured by
AIRS, the eigenvector form of regression is crucial for exploiting the information content
of all channels in a computationally efficient way. By representing radiometric
information in terms of a reduced set of eigenvectors (much fewer in number than the
total number of instrument channels, described in sub-section 5.3.1), the dimension of the
regression problem is reduced by approximately one order of magnitude. Another
advantage of using a reduced set of eigenvectors is that the influence of random noise is
reduced by elimination of higher order eigenfunctions which are dominated by noise

structure. It should be noted that if all eigenvectors are retained as basis functions, the
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eigenvector regression reduces to the ordinary least squares regression solution in which

satellite measurements are used directly as predictors.

Eigenvectors of the radiance covariance matrix are computed from AIRS cloudy radiance
and are used as basis functions to represent the AIRS radiometric information. The
generation of the covariance matrix and derivation of the eigenvector coefficients is
discussed in sub-section 5.3.1. The use of principal component analysis reduces the data

into fewer components that still retain the information content of the original data.

These components are commonly referred to by statisticians as Principal Component
Scores (PCSs). AIRS cloud cleared radiances are converted to PCSs and then used to
solve for atmospheric temperature, moisture, ozone, surface temperature. The training of

these geophysical regressions is discussed in sub-section 5.3.3.

The application of these coefficients to compute PCSs from AIRS cloud cleared
radiances is discussed in sub-section 5.3.5 and the use of those PCSs to compute
temperature, 7(p), moisture mixing ratio, rw(p), and ozone mixing ratio, r.(p), is discussed

in sub-sections 5.3.7, 5.3.8, 5.3.9, respectively.

A synthetic regression (simulated AIRS radiances) is used to derive the surface

emissivity coefficients and is discussed in sub-section 5.3.10.

5.3.1 Generating the Radiance Covariance Matrix and Eigenvectors

The covariance matrix of radiance is derived from an ensemble of AIRS spectra.
Radiances span two orders of magnitude between the long-wave and short-wave
channels, therefore, we normalized the AIRS spectra by the AIRS instrument noise,

NEDN.um), to minimize numerical effects associated with round-off error.

For version 4.0 a single day of AIRS radiances was determined to be adequate to describe
the entire variance of radiances. A global ensemble of AIRS cloudy radiances from 15
January 2003 was used as the “training” data for eigenvector coefficients. Since there is a
large redundancy in the AIRS granules, a subset was constructed from the AIRS FOV’s.

In each of granule every 9w FOV (1s,10:0,19,. . .,82na) from every 454 scan line
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(45%,90m,135m) was used. This resulted in Je= 240 - 10 - 3 = 7200 spectra to be used for

training.

In the version 4.0 regression a total of M.= 1680 channels were considered to be reliable
for all post launch epochs based on the AIRS science team channel property files (v6.6.x)
and a summary list of channel behavior over two years, compiled by Margaret Weiler. In
addition, channels that are affected by non thermodynamic equilibrium (P-branch side of
the 4.3 um CO: band) were also removed. The AIRS channel numbers used are listed in

Table 5.3.8 for reference.

Detector arrays can experience spurious events that can alter the noise characteristics.
The AIRS L1b calibration can mark certain channels as bad on any arbitrary scan line.
For training of eigenvectors and regression coefficients any spectra containing bad

channels are removed from the training ensemble.

The deviations of the normalized radiances from their sample mean is denoted as A" O,
a matrix of dimensions [m = 1,M.j = 1, Je], where M. = 1680 is the total number of
instrument channels and J. = 7200 is the sample size of the training data set for
eigenvector coefficients. The deviation matrix is given by

Rn(nz)J < Rn(m)._; >Je Rn( m).} ~

AO, . = _ = —nmd 9
AOm,; NEAN NEAN,, ) NEAN, .,

>,

(5.3.1)

m,j
n(m)

The covariance matrix of the normalized radiances, A", is a square matrix of order M.

= 1680 and is given by

4 Ja
A(;)C'?"" = Z A(—_)m N A(T)T

1
= I A ].”7
- a=1 (5.3.2)

The diagonal elements of A"@cov represent the variance of the respective channel noise
scaled radiance while the off diagonal elements represent the covariance between pairs of
channels. We normalize A®.ov by the number of observations Je so that the magnitude of

the eigenvalues does not change with the size of the training ensemble.
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The relationship between the radiance covariance and eigenvectors and eigenvalues is
given by:

Ae)cm' = E;I;:L ’ Akxls’ : Ek’.m (533)
where Ak is a diagonal matrix with elements equal to A«. We use the routines TRED2,
TQLI in Press, et al., 1986, pgs. 350-363, to derive Ex,» and Axand the routine EIGSRT to
order the eigenvalues in terms of the amount of the total data variance. The largest A«
explains the most variance and each successive eigenvector explains progressively less of
the total data variance. The square root of eigenvalues is equivalent to the standard
deviation of the principal component scores (PCSs, see Eqn. 5.3.6) of the training
ensemble. Since we are using normalized radiances, the square root of the eigenvalues
can be interpreted as signal-to-noise; however, this is only an approximation since the

AIRS short-wave band noise is a function of the scene radiance.

In Figure 5.3.1 the eigenvalues are shown for the training day used in the v4.0 PGE. Also
shown are eigenfunctions of a 3-day (9/6/02, 9/29/02, and 1/25/03) ensemble of synthetic
AIRS radiances in which we used models for temperature, moisture, ozone, and carbon
trace gases, and instrument noise models to compute radiances. The difference between
these two curves represents the information not contained within the synthetic radiances,
most likely due to clouds. The fact that the eigenvalues beyond k = 1000 decrease and
become smaller than the eigenvalues from the simulated clear radiances is an indication
that we may need more than J.= 7200 cases for the training of the EOF’s or that we need
more than one training day. In version 5.0 this will be addressed. In Figure 5.3.2 the first
100 eigenvalues are shown for the v4.0 PGE training day. Again, eigenvalues from

synthetic clear radiances is shown for comparison.

In this formalism, the significant eigenvalues are those that are above the noise “floor”.
Random noise should generate constant eigenvalues, thus we examine Figure 5.3.1 to
find the “knee” in the curve. To the right of this “knee” the information content is
dominated by noise. The optimal number (Kmax) has been determined to be 85 for
capturing the information content of the measurements from AIRS. Using a greater

number of eigenvectors tends to make the regression result more sensitive to noise. Once
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Kmax 1s determined, those eigenfunctions are used as basis functions to represent the
original radiance information in terms of PCS’s. The EOF training procedure produces
the following coefficients:

1. The average radiance of the J.scenes used in the training ensemble, < Rum),j >

2. The eigenvalues, A

3. The most significant eigenfunctions, Exm.

4. and the noise used in the computation NEANm)

The file format for these coefficients is described in Sec. 5.3.2.

Eigenvalues of [R=<R>|N"T[R—<R>]'
108 T ¥ T T T r r r . I . r r . T .
v4.0 (Jan. 15, 2003)

_______ clear radiance simulatign

106 |- —
— 104

102

100 _;—m......_.__ ............ e e e e e e e mmeeme—man——aan -

0] 500 1000 1500
index number, k

Figure 5.3.1. The values of Ay for AIRS cloudy radiances (solid line) and simulated
AIRS clear radiances (dashed line)
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Eigenvalues
———

of [R=<R>INT'[R—<R>]T

108 T
v4.0 (Jan. 15, 2003)

108 clear radiance simulatign
— 104 -
i
= i

102 -

T L —‘ ................... -

@] 20 40 60 50 100 120

index number, k

Figure 5.3.2. The first 100 values of A for AIRS cloudy radiances (solid line) and
simulated AIRS clear radiances (dashed line)

5.3.2 NOAA Eigenvector File Format

The eigenvector file is written out with the following components using FORTRAN
formatted I/O.

* A header block with
— the number of channels in the subset, M.= 1680, format(il3)
— the number of eigenvectors, Kswore=200, format(il 3)
— A flag if radiances are used (set to T), format(2x,L.1)
— A flag is the mean is subtracted (set to T), format(2x,L1)
* The average of “® for the M.channels, format(1x,5g15.7)

< R‘n(m:].j >Je
NE‘AN”II (m)

<O>, =
(5.3.4)

* Each eigenvector, Ekn, is written out as a single record of M.elements for each
value of k = 1, Kiswore,
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format(1x,5g15.7)

* The value of A(k) for k = 1,M., format(1x,5g15.7)

* The value of NEANum for m = 1,M., format(1x,5g15.7)

* The value of channel wavenumber, Vi), for m = 1,M.. format(1x,5g15.7)

* The value of n(m) for m = 1,M.. format(1x,6112)

5.3.3 Generating Regression Coefficients from Principal Component Scores

AIRS viewing geometry changes along the scan-line from —48.95- < a <48.95.. The
regression could have been trained at each of the 30 view angles, or with the assumption
of symmetry about nadir we could have used 15 view angles; however, this creates the
need for a large volume of coefficients and memory requirements. After some analysis it
was decided to train the regression in four view angle regimes, defined in Table 5.3.1,
and use two additional predictors; one for which side of nadir the observation is made,
and the other is the view angle of the observation. In this way, the regression is allowed
to fit the radiances as a function of angular variability over a narrow range of angles and

can adjust the fit for scan asymmetry.

Table 5.3.1. View-angle Regimes in the NOAA Regression
ARROIRTCIIRAC

1]53.130 | 42.269 | =~ 3,000
2 142.269 | 31.788 | =~ 6,000
31 31.788 | 19.948 | =~ 7,000
4119948 | 0.000 | = 10,000

In our algorithm, we normalize PCSs by the square root of the eigenvalue to minimize
numerical roundoff error in the computation. Again we employ Eqn. 5.3.1, reproduced
below, to convert our spectrum of M. channels, for an ensemble of scenes, into PCSs to
be used for training the regression coefficients. The J- scenes used for training the
regression coefficients are not the same scenes as used in training the eigenvectors, that is
Jr = Je. In the AIRS science team algorithm we will apply the regression coefficients to

cloud cleared radiances, therefore, cloud cleared radiances are used to compute the
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regression coefficients. Each spectrum Ruum, , is first converted to a signal-to-noise

departure from the average of the eigenvector training ensemble, < Rum),j >

Aé) _ Rn(m)._} . < Rn(m).j >Je B M_ < (:-) P>
2 NEAN, .,  NEAN, . NEAN, () 7 7% (5.3.5)
and then converted into PCS’s
1 ~
PA ] = o : Ek.m A(T)"LJ
V Ak (536)

Only k = 1,Kma principal components are kept, where Kmax = 85 is the number of

significant eigenvalues determined in sub-section 5.3.1.

A predictor array is constructed using the PCSs for those cases with ai(v) < lal < a2(v),
where a is the instrument view angle. The predictor argument for the sub-set of cases is
assembled with the first Kmax elements being set equal to Px,;. The element i = Kmax+ 1 is

set equal to one if a < 0 or zero if a >0. The element i = Kmax +2 is set equal to 1—cos

( 180 ) Therefore, the complete predictor vector used in this regression can be given by

( Py ; \

' i=1,Knax +2
P]\"m;x g max

1—sign(a;)

\1 - cos(52) /

(5.3.7)

For AIRS, we use Kmax = 85 principal component scores for predictors and solve for
atmospheric temperature, moisture, ozone profiles, and surface temperature. Initially,
only one day of data was thought to be sufficient to generate regression coefficients;
however, we found that the analysis field may have large errors in certain regions.
Currently, three days from AIRS observations for the generating regression coefficients
are 6 September 2002, 25 January 2003, 8 June 2003, collocated with estimates of the

true atmospheric profiles (i.e., ECMWF). Data are selected by screening out cases where
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the AIRS cloud cleared radiances may be affected by clouds and where there may be

problems with the geophysical states used as “truth” using the following tests:

1. The brightness temperature of the AIRS observation in channel # 2112,
Bv"l(Rn(m)) must be within = 5 K of the predicted brightness temperature,

®(2212), computed from AMSU radiances, ®4(n). We use AMSU channels n = 4,
5, and 6 to compute the predicted AIRS radiance, ®(2112), as follows

O(2112) = a1 +az- Oa(4) +az-O4(5) + a4 -©4(6) + as - cos(f) + ag - (1 — cos(a)) (5 3 8)

where the coefficients of the AMSU screening test used to predict AIRS channel
#2112 (f=2390.53cm-1) are

coef | value multiplied by
a 18.653 | constant
as | -0.169 | AMSU chl4
az | +1.975 | AMSU chl.5
ayg | -0.865 | AMSU chlL6
as | +4.529 | cosine of satellite zenith angle
ag | -0.608 | l-cosine of view angle

2. The reconstruction score, given in Eqn. 5.26, is less than 1.25.

3. Compare the brightness temperatures, computed from the training ensemble
geophysical states with the AIRS cloud cleared radiances for a set of channels
given below. The difference between observed and computed brightness
temperature for all 12 channels must be within 2 K. The 12 channels are

NOAA AIRS reason
index | channel freq. | for test
84 186 | 702.18 | 200 mb T
87 198 | 706.14 | 300 mb T
92 215 | 711.00 | 400 mb T
04 221 | 71274 | 500 mb T
97 232 | 715.94 | 600 mb T
103 262 | 72482 | 700 mb T
113 333 | 746.01 | 800 mb T, cloud contamination
117 375 | 759.57 | 900 mb T, cloud contamination
129 914 | 965.43 | surface, cloud contamination
190 1669 | 1468.83 | 450 mb water
201 1763 | 1542.45 | 200 mb water
203 1771 | 1547.88 | 400 mb water

There are approximately 2,700,000 total spectral samples for the three training days and
about 26,000 passed the three threshold tests above. The approximate number in each

view angle regime, J«(v) is given in Table 5.3.1.
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Another issue for the regression is that topography limits the available training ensemble
for some altitude layers. For each case, j, there is a maximum number of vertical levels
defined by the surface pressure (that is,some of the 100« layer grid is below the surface).
If this lower level is given as Loot then the number of cases in the training ensemble, J-, is
a function of how many cases have surface pressure above that level, that is, each profile
is only valid over the range of L = 1, Lvo. Therefore, the number of cases in the regression
training ensemble is a function of both view angle regime, v, and the vertical atmospheric
layer, L. Regression is a linear operator and, as such, each layer and view angle regime is

a separate regression.

We can write the total number of cases used for training the regression in each layer of
the atmosphere and each view-angle regime as J«(v,L). These are the cases that satisfy the
view-angle criteria in Table 5.3.1 and have valid geophysical parameters in the layer
under consideration in Xi. We can compute the average predictor argument for this subset
ensemble and subtract that from the training ensemble

APy j =Py j— < Prj >J5.(.L) (5.3.9)

For temperature we train the regression on the layer mean temperature for atmospheric
layer L and also for surface skin temperature. For moisture the regression is trained on
both the loge(rw(L)) and rw(L), where r«(L) is the mass mixing ratio of water in
grams/kilo-gram (g/kg) within layer L. For ozone the regression is only trained on
loge(ro(L)) where ro(L) is the mass mixing ratio within layer L. The generalized equation
we will solve, for Xi = T(L),Xi = Tsut,Xi = rw(L),Xi = loge(rw(L)), andXi = log.(O3(L)), is
given by

> . be AV .
)&i,.j =< X i,j = Jr(v,L) +Az'.k ' ‘—\Pk-J (5.3.10)

where we can write,

AX;;j=Xi;j— < Xij >JjoL) (5.3.11)

See Table 5.3.2 for a translation from our parameter space, Xi, to geophysical layer

parameter X.. We can solve Eqn. 5.3.10 for the regression coefficients, Aifk , as follows:
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v AV / / / -1
Al =AX; ;- APJTL ' [Apk.j 'Apfk] (5.3.12)

No additional regularization is needed in Eqn. 5.3.12 since the principal components have
been regularized by selecting only Kmax = 85 of the principal components. Once A, is

determined we can combine the average of the geophysical parameter given in Eqn.

5.3.11,

X; =< Xij >J.(.L)
and the average of the predictor given in Eqn. 5.3.9,

P;‘, =< p};.j >JT(L_._L,)

into a single value, called

.4',', = ‘X.;' -+ a’qz}k ’ FL‘

so that our regression equation can utilize the un-normalized predictors. We can rewrite

Eqn. 5.3.11 as

Cy

X;;=Av,+ AV} - Py (5.3.13)

where A’ is defined as

A% =< Xij >5,00) — Al < Prj >0,
; ij r(v.L) i,k J r(v,L) (5.3.14)

Once the regression matrix is known it is useful to compute the mean and standard
deviation of the error between the regression, applied to the training ensemble radiances,
and the geophysical value in the training ensemble. This is the fitting error. Each case has
an error, 0X, given by

X5 =Xi; — |[Avi+ Al - Pr
0A4,j J [_ ik LJ] (5.3.15)

For each geophysical parameter we can compute a mean and standard deviation of the
regression error (difference of regression from the training values). The mean error is

given by
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6)(5 =

- S X .
T (v.L) > 0Xiy

J (5.3.16)

and should be zero for the training ensemble. The standard deviation of the error is given
by

1
2

S 1 g —_—\ 2
o(0X;) = T (0.1 Z ((5)&1'.]‘ - O)&?—)
r\U, ;

(5.3.17)

The standard deviation can be compared to the standard deviation of the training

ensemble’s departure from its mean, given in Eqn. 5.3.11.

o(AX;)

I
~
=~
B~
P
>
~
e

(5.3.18)

The mean and standard deviation of the regression error and the standard deviation of

training ensemble are all written into the regression coefficient file (see section 5.3.4).
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TableS5.3.2. Geophysical parameters, Xi, solved in NOAA real-time regression
(NOTE: r»= mass mixing ratioof water, ro= mass mixing ratio of ozone). The index i
is used in the data file and the index L =1+(i—1)/4 is used in a storage vector in the
retrieval code.

=~

eigenvector regression parameter
(1)

'ru-'(]-)

log,(rw(1))

ngE(TO(].))

T(2)

Tw(2)

loge('rw(Z))

0O ~1 O Ul W bO = .

385 | 97 | T(97)

386 | 97 | 7.,(97)

387 | 97 | log (r,(97))
388 | 97 | log,(7,(97))
393 | 99 | T(Ps)

304 | 99 | r,(P.)

395 | 99 | log (rw(Fs))
396 | 99 | log,(7o(Fs))
397 | 100 | T,

] n | synthetic regression parameter
401 ] 1 [e(1)
402 | 2 | €(2)

439 | 30 | (39)
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Figure 5.3.3. Regression Statistics for the V4.0 Temperature Regression. In each
panel there are 4 lines corresponding to v =1 (black), v =2 (red), v =3 (green) and v
=4 (blue). From left to v =1 (black), v =2 (red), v =3 (green) and v = 4 (blue). From
left to right the panels are J.(v,L), <X > (1), O(AX;), using Eqn. 5.3.18, and (X))

using Eqn. 5.3.17.
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Figure 5.3.4. Regression Statistics for the V4.0 Water Regression. In each panel
there are 4 lines corresponding to v =1 (black), v=2 (red), v=3 (green) and v =4
(blue). From left to right the panels are

Xj=<Xij >s@0),
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o(AXi)/X, using Eqn. 5.3.18, and 6(0.Xi)/X, using Eqn. 5.3.17. Solid lines are
the linear water regression and dashed lines are the logarithmic water
regression, in which exponentials of X are computed to convert log(r.(L)

into rv(L).
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Figure 5.3.5. Regression Statistics for V4.0 Ozone Regression. In each panel there
are 4 lines corresponding to v =1 (black), v =2 (red), v =3 (green) and v = 4 (blue).
From left to right the panels are

/\, =< ‘\?J ‘-'>J7-l::l'.L:),

o(AXi)/X, using Eqn. 5.3.18, and 6(0.Xi)/X, using Eqn. 5.3.17. Exponentials of X are
computed to convert log(r.(L) into r.(L).

5.3.4 NOAA Regression File Format

In the NOAA regression file each set of geophysical parameters is written for a view
angle block. The index number system for the geophysical parameters is given in Table
5.3.2 or 5.2. In the profile regression, the 393 parameters (1-388,393-397) are written out
in 4 sequential blocks in the regression file. In the surface regression the 39 emissivity

regressions are written out for the 4 land types. The overall structure of the data file looks
like

* Header Block for Profile Regression

* 393 regression sets for view angle regime number 1
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* 393 regression sets for view angle regime number 2

* 393 regression sets for view angle regime number 3

* 393 regression sets for view angle regime number 4

* Header Block for Synthetic Emissivity Regression

* 39 regression sets for land surface type 1 (non-frozen land)
* 39 regression sets for land surface type 2 (non-frozen ocean)
* 39 regression sets for land surface type 3 (ice)

* 39 regression sets for land surface type 4 (snow)

Each regression set includes the following:

* The header line, format(2i4,a10,16,4f10.5), for the profile and emissivity
regression set contains

— The parameter number (see Table 5.3.2)

— The number of predictors, / = Kmax+ 2

— The pressure at level L or frequency at emissivity 7.

— The number of cases in training ensemble, J-(v,L) or J (/).

— The mean of the training ensemble,
< X >i. ) or < X; >5.
— The standard deviation of the training ensemble, 0(AX(L))

— the standard deviation of the error of the regression applied to the
training ensemble, o(0X(L))

* A block of I + 1 = Kmax+ 3 coefficients, starting with

;—'].t"i

and then the 7 values of Ai(L) are written with format(8g15.7)
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5.3.5 Computing Principal Component Scores from AIRS Radiances

We begin by computing the radiance argument from AIRS cloud-cleared or clear
radiances for our single spectrum for scene j using Eqn. 5.1 for the M. channels used in

the eigenvector array.

A(;)m._, = 1\153% - < (;) Zm
= n(m) (5.3.19)

The channel list, n(m), noise values, NEAN.w), and average radiance, < “® >u, are all

read in from the eigenvector coefficient file.

We then convert the radiance argument into principal component scores; however, some
of the AIRS HgTeCd detectors may suffer from a phenomena described as “popping” in
which the detector has a non-Gaussian noise event that can be many NEAN units. This
“popping” occurs for any arbitrary channel about 1:10,000,000 measurements. When
training eigenvectors or regression coefficients any spectra containing bad channels are
simply removed from the training ensemble. When applying the regression operationally
the use of a bad channel can be quite detrimental, therefore, we need a dynamic ability to
remove BAD channels from our algorithm. In the physical algorithm, the channel is
simply removed from consideration; however, in regression algorithms a bad channel

cannot be removed.

Bad channels can be found by monitoring the reconstruction scores (see Eqn. 5.3.26) and
the difference between the reconstructed and the observed radiances. If AIRS levellB
radiance quality flags indicated the radiance is sub-optimal (i.e., the CalFlag bit 4,5,6 is
set), we compute the PCSs by using the mean deviations of the neighboring good
channels of the bad channels (using the average of the 10 neighboring channels). Then
we use this set of PCSs to reconstruct those channels that are marked bad. After that we
recomputed the PCS, substituting the reconstructed radiances for the bad channel(s) and

use that PCS for regression retrieval.
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For example, if channel mo is BAD in radiance set R.um), for case j it can be crudely

estimated by the average value of the neighboring radiances.

~ 1 = =
A(T)IHQ._} 1() Z (Ae)yﬂo—i.j -+ Ac_)mo-ﬁ.j)
i=1,5 (5.3.20)

where mo —i is the im closest valid radiance, within our channel list, on the low
wavenumber side of mo and mo +i is the the im closest valid radiance on the high
wavenumber side. In the PGE code we exclude any of the i channels that are marked bad,
so there can be less than 10 channels in Eqn. 5.3.20; however, this event is incredibly
rare. We begin by using this estimate in place of the bad radiance(s) to compute an initial

guess for the principal component score, P,fj

1 -~
Ek m " Ae)m )

g = Ay Bk .
VAE) (5.3.21)

Once P,fj is computed, the BAD radiance for channel mo can be estimated from all the

Py

remaining good radiances and our estimate of the bad radiance. This approach can only
work if there is redundant information contained within the spectrum. For AIRS the 1680
channels can be represented by approximately 85 principal components, therefore, the is
approximately a 20:1 redundancy in the AIRS spectrum. The radiance argument for the

bad channels is replaced by one computed from our entire spectrum as follows

Omo.j Y E'”D k "J , where, mois the index of the BAD channel  (5.3.22)

Then the PCSs can be recomputed from the improved estimate of the bad radiance along

with the good radiances.

’ Ek.m ’ Aé)m._i

g -
VAK) (5.3.23)

This process could be iterated until P,f!j converges; however, the first iteration appears to

be adequate in operation. Basically, we use principal components to generate

reconstructed radiances and to compute the Root Mean Square (RMS) between the
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reconstructed radiances and the observed radiances. It appears that the RMS for most
cases is comparable with the instrument noise level, therefore AIRS observations can be

reconstructed very accurately by using about 85 PCSs.

We use the first iteration of the PCSs, P,

2J2

in all our regression applications in the next

three sections.

5.3.6 Computing Radiance Reconstruction Scores
Reconstructed radiances are computed from the principal component scores (PCSs) and
inverting Eqn. 5.3.19 to obtain a radiance.

Ru(my.j = NEAN () - (< O >, +V/Ak)-ET . Pl}.j) (5.324)

The reconstructed radiances can be thought of as noise free radiances, therefore, we can
estimate the noise in the spectrum by taking the difference between the radiance

argument and the reconstructed radiance argument as follows

Rn(m].j - Rn(m) 7

‘ AO,,; —/Ak)-EL . PL.
NEAN,, () J 7 (5.3.25)

el
CSm g =

If we take the root-sum-square of RS then we have a single parameter that describes the

quality of the spectrum.

m=1 (5.3.26)

A value reconstruction score equal to one is an indication that the radiance noise is
statistically equal to the our noise estimate, NEAN:m). The reasons that a reconstruction

score is different than one could be due to:

* The spectrum has bad channels that were not identified.

* Instrument problems, such as incorrect detector temperatures, scan mirror not
pointing toward the Earth, etc.

* The instrument noise has changed or is significantly different that NEAN (e.g.,
in warm scenes the AIRS noise in the short wave becomes larger, hence, RS, will
be larger than 1).
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* The spectrum contains information that was not in the eigenvector training
ensemble, Je. For example, a volcano can produce trace gases, such as sulfur
dioxide, which has a unique spectral structure that is not represented in our Kmax
eigenvectors.

The value of RS;is shown in the top panel of Figure 5.3.6 from the real-time NOAA

radiance monitoring web-page:

(http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html).

In this case an eigenvector set trained on 1688 channels was used of which 8 have been
permanently removed in the eigenvector training discussed in this ATBD. On the bottom
panel the number of channels marked bad is also shown. In Figure 5.3.7 the

reconstruction score is shown for a single day. Notice that the ascending (daytime) orbits

show some high scores over desert regions.

3core

Number of Bod [han,
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Figure 5.3.6. Upper Panel: Value of RS; versus Time. Lower Panel: Number of
Channels Marked Bad by the L1 QA. Ascending observations shown in gold color
and descending shown in blue. From NOAA real-time web site:

http://www.orbit.nesdis.noaa.gov/smed/spb/airs/xindex.html
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Figure 5.3.7. The Value of RS; as a Function of Geography for Ascending (Top) and
Descending (Bottom) Observations. From NOAA real-time web site:

http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html

5.3.7 Computing Temperature and Skin Temperature from Principal
Component Scores

The temperature profile is derived from PCSs computed in Eqn. 5.3.23 as follows

T(L) =A%+ A}y Py i=1+4-(L-1) (5.327)

and Tsuris computed as
/ _ Av. v . 7 =
Tsu.rf = ALZ + Ai,k ka] i =397 (5.3.28)
Note that the regression coefficients can be related to empirical kernel functions,

K,(L)
for channel » and pressure layer L. In the eigenvector regression the empirical kernel
functions can be computed for each view angle regime, v, by

T
Kn(rn)(L 9) L) k Ek Jm + Az(L) K max+2 ' (1 oS ( 180 >) (5329)
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where, we assumes positive view angles (to eliminate need for scan side predictor) and
i(L), is the subset of indices for the selection of the geophysical parameter group (e.g.,

T(L),is givenfor L=1, 2, 3, ..., whichis givenbyi=1,5,9,...in Table 5.3.2)

f(71)=666.77 £(99)=673.90 f(201)=706.99 f(2B0)=729.57
I I 1 1

\ 10 10 T 10 T

10

100 100 100 100

F, mb
F, mb
F, mb
F, mb

1000 i& L 1000
=1 o 1 2 =1

Figure 5.3.8. Example of Empirical Kernal Functions, using Eqn. 5.3.29, for Four
AIRS Channels, using the NOAA V4.0 Regression. Black is at « = 47 red is at a
=35, green is at @ =25, and blue is at « =10".

An estimate of the propagated error in the principal components for case j, 0 * Px;, can be
given by the root-sum-square (RSS) of the linear combination and an estimate of the error
in the radiance for case j, ORum, . This results in an error in the argument of 0 Ouwm),; =

ORum) /NEANm and

M, M - 2
) 1 <= . 2 1 . OR, (mys \~
(5P ;= —— (E com " ()(T)” m) ) = —— E cym " 71
kg J \«",/\k 2_:1 . e J \/X —1 ( . NEANH("?)
"= "= 5.3.30)

A propagated error estimate can be computed from the linear combination of principal

components

2

0Xi ;= \/Z ( ik -(SP,\._J-)“

(5.3.31)
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5.3.8 Computing Water Vapor Regression from Principal Component Scores

For moisture, the regression is trained on both the log.(r+(L)) and rw(L), where rw is the
mass mixing ratio of water in grams/kilo-gram (g/kg). Both regressions are computed and
the total precipitable water is computed from the linear mass mixing ratio regression. For
each level, L, the index into the coefficient tables, i1 for r» and i for log.(rw) can be

computed easily (see Table 5.3.2)

ro (L) = A, + A7 .- P i1=244-(L—1
2 (L) i1 ik Dr 1 +4-( ) (5.332)
rus(L) = exp (A%, +AY ;- Prj)  d2=3+4-(L-1) (5.3.33)
For each profile we can compute the Total Precipitable Water (TPW) as follows
~ ruy (L) - Ap(L)
Tpw =y Tw ) TP
L=1 I (5.3.34)

If the TPW is less than 1 then we use rw(L) = rwi (L) otherwise the mass mixing ratio used
is rw(L) = exp(rw(L)). In addition, if TPW is less than 1 and any element of rw (L) is less
than zero then exp(rw (L)) is substituted for that element (this may be changed for v5.0,
since we do see some instances of very thin dry layers induced by this). In addition, the
individual elements are never allowed to exceed the saturation mixing ratio, rs(L), given

by

s = Z a; - (T — 273.15)f
=0 (3.3.35)

The choice of coefficients is determined via an ICE flag. Water is valid over the range of
-85 <T7-273.15 <70 Celsius and the ice coefficients are valid over the range of -85 <7 —
273.15 <70 Celsius. The coefficients are given in Table 5.3.3.
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Table 5.3.3. Vapor Pressure Coefficients (Flatau, Walto, and Cotton (1992)

GO =1 T U1 b= 2 B2 = O =

water ice
-85 — 470 C 90 —-=00C
6.11583699 6.00868993

4.44606896-10~1
1.43177157-1072
2.64224321-10~4
2.99291081-10~°
2.03154182.10~°
7.02620698.10—11
3.79534310-10—14
-3.21582393.10~16

4.99320233-107!
1.84672631-102
4.02737184-10~4
5.65392087.10~°
5.21693933.10~8

3.07839583.10~1Y

1.05785160-10—12
1.61444444.10~1°

If we assume mw, = mw,and g = 980.64 =~ 1000 then the mass mixing ratio can be

converted to layer column density (molecules/cmz) as follows

Tw (L) : ‘N-A
T, - 1000 - Ap(L)

A("w(-[’) =
(5.3.36)

where mw, = mwa + mw,,

is the molecular weight for air, mwais the molecular weight of dry air, mw,is the

molecular weight of water, mw,, = 18.0151 grams/mole, and Nais Avogadro’s number =
6.02214199-1023 molecules/mole. The conversion to layer column density is done by the
routine colden.F. In v5.0 we will remove the approximations above. This should remove

a moist bias of approximately 2% in the tropical region.

In a system that has performed a microwave physical retrieval of water vapor we can
improve the regression solution over ocean if we adjust the regression water vapor to the
total column water vapor from the microwave. This is done by summing the layer column

densities from the microwave retrieval,
CH =Y ACM (L)
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which is the total column density in molecules/cmz. The same calculation is done for the
regression retrieval resulting in C**°. We then multiply the layer column density by the

ratio of the total column densities from the regression and microwave retrieval,

Lyot
Z A('MIT )

ACRPIL) = ACTFE(L) - | 1=

i‘"_\(vmzc L)
=1

(5.3.37)

This is done in the routine amsu adj.F. Note that in version 5.0 this correction will be
removed. With the loss of HSB the total water column derived from the AMSU radiances

is not as accurate and this correction is removed.

5.3.9 Computing Ozone Mixing Ratio from Principal Component Scores

For ozone, the regression is trained on the natural logarithm of mass mixing ratio of
ozone, loge(r.(L)), in grams/kilo-gram (g/kg). For each level L (see Table 5.3.2) the

mixing ratio of ozone can be given as

ro(L) = exp (MIN [-3.5, 4% + AV} - P j])  i=444-(L-1) (5.3.38)

Again, if we assume mw: = mwa and g =980.64 = 1000 then the mass mixing ratio can be
converted to layer column density (molecules/cm?) as follows

ro(L) - Na

AC(L) = T=000- Ap(D)

(5.3.39)
where m_wo = 47.9982 grams/mole is the molecular weight of ozone and Niis Avogadro’s
number = 6.02214199 -1023 molecules/mole.

5.3.10 The Surface Emissivity Regression

In the case of surface emissivity there is no truth datasets that we can utilize to train
regressions with real AIRS radiance data. For emissivity we simulated J (/) cases where
the infrared radiances were computed from the ECMWEF forecast (15 December 2000)
and a surface emissivity model (Fishbein, et al., 2003) was used for / different kinds of

surface conditions (in v4.0 we performed separate regressions for land, ocean, ice,
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and snow, see Table 5.3.6). The eigenvector approach was not used. We used a subset of
AIRS radiances for M window channels, R, to regress against the emissivities used to
product those radiances, (i, j). The M frequencies, n(m) are given in Table 5.5. The 39
frequencies where emissivity, (i, j), was specified is given in Table 5.3.4. Notice that
short-wave observations are not used to predict short-wave emissivity. This regression
relies on statistical correlations between the short-wave and long-wave to solve for these

parameters.

The predictors consisted of the M radiances, written as signal-to-noise (see Eqn. 5.3.1),
and two predictor to account for atmospheric transmittance as a function of viewing
angle; one for which side of nadir the observation was made and the other is the cosine of
the view angle. Since all J (/) cases in the training ensemble see the surface, there is no
subset for topography. Also, window channels require only a minor adjustment for view
angle, so the complete ensemble was used rather than making separate regression for
each view angle regime, as was done for the atmospheric parameters. The ocean
emissivity is a well modeled function (i.e., the AIRS science team uses the Masuda, et
al., (1988) model as modified by Wu and Smith (1997). The regression was performed on
land, ocean, ice, and snow emissivity models. Figure 5.3.9 and Figure 5.3.10 are the
average and standard deviation of surface emissivity for the four different types of land
from the emissivity training used in the AIRS v4.0 regression. The complete predictor

vector can be written as

Ry ;
Ry ; \
' «cae P 7 9
PI;.] RJ\[(J} A J., JI + V4
1—sign(a;)
B g
1 - cos(Ta) / (5.3.40)

where we can write,

AX; i =Xi;— <X, >50
i i 7 7 de(l) (5.3.41)

with the Xi’s defined in Table 5.3.5 and the least square solution is given by
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_ , , , —1 .
Al =AX;-AP[, - [AP. ;- AP],]  for the J.(I) cases (5.3.42)

Again, once Al.’, , 1s determined we can combine the average of the geophysical emissivity
parameter and the average of the predictor into a single value, called A, so that our
regression equation becomes

Xy =AlL + AL, - Py
j(v.L) i +Aik Lk (5.3.43)

where Zf is defined as

/ e ’l } )
.Flli = .Fl:-.k' < PA] >J£'::l::'
(5.3.44)

These regression coefficients have the same format as the ones described in sub-section

5.3.3 with geophysical index number given in Table 5.3.2.

We use the land fraction and microwave surface class (defined in Table 5.3.7 to
determine which surface regression coefficients to utilize. In Table 5.3.6 the logic used in

both training and application of the coefficients is shown.

Table 5.3.4. Frequencies for the 39-Point Model for Emissivity Regression

649.35 | 666.67 | 684.93 | 704.22 | 724.64
746.27 | 769.23 | 793.65 | 819.67 | 847.46
877.19 | 909.09 | 943.40 | 980.39 | 1020.4
1063.8 | 1111.1 | 1162.8 | 1204.8 | 1234.6
1265.8 | 1298.7 | 1333.3 | 1369.9 | 1408.4
1449.3 | 1492.5 | 1538.5 | 1587.3 | 1639.3
2173.9 | 2222.2 | 2272.7 | 2325.6 | 2380.9
2439.0 | 2500.0 | 2564.1 | 2631.6
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Table 5.3.5. AIRS Channels used in Surface EmissivityRegression

v3.0, v3.18 v4.0, (after 4/10/04)

n | f(n), cm™! n f(n), em™!
475 801.00 475 801.0990
484 804.29 484 804.3860
497 809.08 497 809.1800
528 820.73 528 820.8340
587 843.81 587 843.9130
787 917.21 787 917.3060
791 918.65 791 918.7470
843 937.81 843 937.9080
914 965.32 870 948.1840
950 979.02 914 965.4310
1138 | 1072.38 950 979.1280
1178 1092.31 1119 1063.285
1199 | 1103.06 1123 1065.216
1221 1114.53 1178 1092.451
1237 | 1123.02 1199 1103.199
1252 | 1131.08 1221 1114.675
1263 | 1216.84 1237 1123.162
1285 1228.09 1252 1131.229
1263 1216.974

1285 1228.225

Table 5.3.6. NOAA Regression Surface Classification Determination from % Land
Cover (p) and Microwave Surface Classification (m)

surface
[ class logic
1 | non-frozen land ((m=0) or (m=1)) and p > 19{
2 | non-frozen water | (m=2) or (p < 1% and ((m=0 (m=1)))
3 ice (m=3) or (m=4) or (m 5}
4 SIOW (m=>5) or (m=
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Table 5.3.7. Microwave Surface Class Definitions

microwave surface
m classification
0 coastline
1 land (land cover > 50%)
2 ocean
3 high microwave emissivity sea ice
4 low microwave emissivity sea ice
5 snow (higher frequency scattering)
6 | glacier/snow (very low frequency scattering)
7 snow (lower frequency scattering)
T e
A T e
7 1‘\ .' = -]
/ Hx /I B ———
/ \ ]
,n"ll \"1,1I / typs 1(Unfrozsn Land}
\‘ ",HJ tpe Z2U0pen Water)
\ I| twvpe 3ilzs Cowar)
'|
|
|
l
oo 1200 1200 1400 1E0D 1800 2000 2200 Z420 2800

Figure 5.3.9. Mean Value of the Emissivity Training Database for the 4 Surface

Types used in the V4.0 Regression
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Figure 5.3.10. Standard Deviation of the Emissivity Training Databasefor the 4
Surface Types used in the V4.0 Regression
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1
18
33
50
65
80
95

110
127
145
160
175
190
205
220
235
261
266
283
301
320
343
362
392
416
436
462
493
524
547
570
607
635
651
668
689
705
725
745
772
792
813
840
862
898
936
969
993
1015
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Table 5.3.8. AIRS Channels used in Eigenvector Computation

2
19
34
51
66
&1
96

111
128
146
161
176
191
206
221
236
252
267
284
302
322
344
364
393
417
437
465
496
526
548
572
609
637
652
669
690
707
726
746
774
793
814
843
863
902
944
971
996

3
20
35
52
67
82
97

112
129
147
162
177
192
207
222
237
253
268
285
303
323
345
366
394
418
438
469
497
627
550
575
613
638
653
671
691
708
T27
748
775
794
816
844
869
903
946
972
997

1016 1017

4
21
36
53
68
83
98

113
130
148
163
178
193
208
223
239
254
269
286
304
325
347
368
395
419
439
471
501
528
551
576
614
639
654
672
692
709
728
752
776
796
818
845
870
904
948
973
998
1019

5
22
37
b4
69
84
99

114
131
149
164
179
194
209
224
240
265
270
287
306
327
348
369
397
421
441
473
503
529
52
577
616
640
656
673
693
710
729
754
77
797
819
846
872
905
950
976

6
23
38
55
70
85

100
115
135
150
165
180
195
210
225
241
256
271
289
307
329
349
371
399
422
443
475
504
530
bbb
579
617
641
657
674
694
711
730
757
778
798
820
847
873
908
951
977

999 1000
1020 1022

7
24
39
56
71
86

101

116

136

151

166

181

196

211

226

242

257

272

290

308

330

361

375

400

423

444

476

5056

532

556

580

618

642

658

675

695

712

731

758

779

799

821

848

874

909

9563

978

8
25
40
b7
72
87

102
117
137
152
167
182
197
212
227
243
268
273
293
309
332
362
376
403
424
445
478
509
533
559
584
619
643
659
676
696
713
732
759
780
804
822
851
877
914
955
982

1002 1003
1024 1025

118

9
26
41
58
73
88

103
118
138
163
168
183
198
213
228
244
259
274
294
310
333
354
378
406
425
449
479
513
536
560
6587
621
644
660
6877
697
714
735
761
781
805
823
852
881
916
9568
984
1004
1026

10
27
42
59
T4
89
104
119
139
154
169
184
199
214
229
245
260
275
205
311
334
355
380
407
426
450
480
516
538
562
592
626
645
661
679
698
718
737
763
782
807
824
853
882
921
959
985
1005
1027

11
28
43
60
75
90
105
120
140
155
170
185
200
215
230
246
261
278
296
314
336
356
383
408
427
452
482
518
539
563
593
627
646
662
680
699
719
738
764
785
808
825
854
888
924
960
986
1006
1028

14

29

44

61

76

91
106
123
141
156
171
186
201
216
231
247
262
279
297
3156
337
357
385
409
429
453
483
519
540
564
594
628
647
663
683
700
720
739
766
786
809
829
856
893
929
963
987

156

30

45

62

77

92
107
124
142
157
172
187
202
217
232
248
263
280
298
316
338
358
387
410
430
455
484
521
541
565
597
632
648
665
684
701
721
740
767
787
810
833
857
895
932
964
988

1008 1010
1029 1030

16
31
46
63
78
93
108
126
143
158
173
188
203
218
233
249
264
281
299
317
339
359
389
411
433
456
485
522
544
566
600
633
649
666
685
702
722
741
769
788
811
838
858
896
933
967
989
1011
1031

17

32

47

64

79

94
109
126
144
159
174
189
204
219
234
250
265
282
300
319
340
360
390
414
435
459
486
523
546
567
606

650
667
687
704
724
T44
771
791
812
839
861
897
935
968
992
1012
1032



1023
10E7
1078
1106
1119
1145
1182
1121
1204
122
1242
1288
1285
1313
1320
1345
1354
1370
1395
1412
1427
1442
1457
1472
1600
16182
1633
1580
1585
1581
160
1612
1628
1643
1658
1674
1652
1707
1724
1753
1750
1743
1800
1825
1844
1850
1874
2412
247
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1034
ines
07a
1104
1121
1148
1183
1182
1206
1227
1249
1287
12
1314
1330
1348
13ek
1321
130
1412
422
1442
1462
14732
1601
1619
1634
1681
1688
16E2
1847
1613
1620
1644
16648
1675
1693
17
1737
174
1770
17ad
1810
1827
184%
18a0
187E
M1z
b e

1038
100
1020
1103
1122
1147
1154
1183
1206
128
1250
1258
1340
1315
1331
1347
1356
1332
1388
1414
1420
1444
1450
1474
1502
1820
1535
1852
1857
1523
1548
1614
1830
1545
1850
1676
1584
1700
1738
L
1771
178k
12114
1228
1246
1251
1876
2114
2120

Table 5.3.8. AIRS Channels (Continued)

1330
1061
1084
1104
1123
1150
1168
1184
1207
1229
1252
1260
13
1316
1332
1348
1367
1383
1400
1415
1430
1445
1460
1475
1503
15
1536
1553
1568
1584
1509
1515
1531
1546
1561
1877
1505
1710
1730
1756
1772
1706
1213
1220
1247
1262
1277
2115
2130

1042
1062
10|z
1108
1130
1161
1169
1186
1200
1231
1263
1270
1z02
1247
1334
1360
1368
1384
1404
1418
1431
1445
1461
1477
1504
1622
1837
1864
1569
1585
100
1616
1832
1647
1662
1&7a
1606
1711
1740
17ET
1773
ivar
1214
1230
iz48
1263
1278
2116
2131

1043
1064
1083
1107
1131
1152
1170
1187
12144
1232
1264
1271
1303
13182
133&
1362
1360
1385
1402
1447
1432
1447
1462
1472
1505
1523
1539
158E
1870
1588
1604
1618
1633
1642
1663
1679
1697
1714
1742
1758
1775
17
181%
1831
1849
1864
1879
2147
2132

1044
1065
1084
1108
1134
1153
1171
1188
1212
1233
1267
1272
1304
1319
1338
1353
1370
138¢
1403
1418
14332
1442
1463
1480
1508
1524
1540
1558
1571
1587
1602
1619
1634
1649
1664
1680
16082
1715
1743
1760
1776
17949
181&
1832
1850
1865
1880
2118
2133

1045
107
1025
1110
1138
1184
1172
1180
1213
1234
1268
1273
1306
1320
1337
1388
1371
1387
1404
1419
1424
1449
1454
1421
1508
1525
1541
1567
1572
1588
1604
1620
1635
1650
1665
1681
1650
1716
1744
1761
1777
1800
1817
1823
1861
1866
18281
19
234

119

1048
100
10286
11114
1137
1185
1174
1194
1214
1235
1280
1274
1308
13214
1338
1387
1372
1328
1405
1420
1435
1450
1455
1432
1500
1526
1542
1558
1873
1820
1805
1821
1636
1554
1656
1232
1700
1717
1745
1752
1778
1204
1218
1234
1262
1257
1222
2420
2135

1047
1470
1028
1113
11z0
1156
1175
1195
1215
1236
1250
1275
1307
1322
13z0
1358
1373
1220
1406
1424
1436
1454
1456
1424
1510
1527
1544
1850
1574
15420
1806
1822
1837
1552
1857
1523
1704
17148
1747
1753
1774
1203
1219
1235
1253
1258
1223
21
2136

1048
1071
1089
1114
1140
1167
1178
1198
1218
1237
1261
1278
1308
1323
1340
1350
1374
1380
1407
1422
1437
1452
1467
1485
1541
1t28
1545
1560
1575
1581
1507
1523
1538
1563
1568
1584
1702
1719
1748
1764
17an
1204
1221
1238
1264
1260
1284
222
2137

1050
1072
1080
1115
11414
1158
1177
1189
1210
1238
1262
1277
1300
1324
13414
1360
1375
1304
1408
1423
1438
1453
1468
1498
1513
1520
1548
1561
1578
1502
1608
1624
1630
1654
1660
1685
1703
1720
1740
1765
1783
1805
1822
1830
1855
1870
188k
2123
2138

1061
1074
1047
1118
1142
1155
117
1200
1220
1241
1262
1278
1310
1326
1342
1361
1376
1302
1409
1424
1439
1454
1469
1497
1514
1530
1547
1562
1577
1502
1609
162E
1640
1665
1670
1686
1704
1721
176D
1766
1785
1806
1822
1840
1865
1871
2409
2124
2130

1052
107E
1052
1117
1143
1180
11789
1201
1221
1245
1284
12709
1311
1326
1343
1382
1377
1393
1410
1425
1440
145
1470
1492
1518
1521
1542
1583
1578
1544
1610
1626
1641
1655
1671
1687
1706
1722
1764
1767
17a0
1807
1824
1841
1867
1872
2410
22k
2140

1055
1077
1020
1112
1144
1181
1120
122
1223
1247
1285
1284
1312
1327
1344
1383
137g
1394
1411
1425
1441
1455
1471
1450
1617
1632
1549
1584
1620
1595
1611
1627
1642
1657
1673
162
1706
1723
1752
1758
172
1802
1825
1843
iac%
1873
2911
S
2141
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Table 5.3.8. AIRS Channels (Continued)

2142 2443 2144 2145 2146 2347 2442 2449 2450 2152 2164 24586 2466 24ET 24E8
250 Mad 2161 262 2163 2464 6L 2e5 2167 2ieB 2160 2470 2471 2472 2473
2474 MTE ATe ZATT 2178 2470 280 2481 2182 2123 2184 2486 2486 48T 2480
80 MO 2191 202 2103 2404 205 205 21097 2198 2100 2200 2204 2202 2203
2204 2205 2206 Z20T 2208 2200 2240 2211 2247 2213 2244 2246 26 2217 2248
2240 223 DRy F22Q 2R3 2234 222% 2220 22T IR 2RO 2230 2231 2232 2223
2234 2235 2236 ZF23T ZE30 2240 2244 2242 2244 2245 ZR4e 2247 2248 2249 2280
2261 2262 D23 F2TI ZET4 2ATL 2ATE 22TT 2270 2IT0 ZRA0 2284 2282 2283 228y
2280 2200 22T 280 2200 2200 2202 2203 220 220L 220 2207 2200 2200 2300
2301 2302 2303 Z304 2306 2308 2307 2308 2300 2310 2311 2342 2313 2314 231k
2316 2317 2318 Z310 2RO 2321 2322 2323 2321 2320 2326 23QT 2328 2320 2330
2331 2332 2333 2334 2336 2336 2337 2338 2330 2340 2341 2343 2343 2344 2345
2345 2347 2348 2340 2RE0 2361 2362 2363 2364 23EL 236E 2308 2360 2381 2382
2353 2364 2380 Z366 ZIET 2368 2360 23TO 2371 2372 2373 23T Z3TE 23T 2378
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5.4 Final Product
5.4.1 Introduction

To satisfy the science requirements of NASA’s Earth Science Enterprise, a final
adjustment is made to the first product based on the difference between calculated and
cloud-cleared radiances, producing more accurate results. In addition, final product steps

calculate cloud parameters and research products not generated by the first product steps.

When solving for a set of geophysical parameters, it is desirable to be able to choose an
appropriate set of parameters to solve for and select channels that are both sensitive to
those parameters and relatively insensitive to other parameters. In general, channels will
be affected by more than one type of parameter. For example, channels with radiances
sensitive to the water vapor or ozone distribution are also sensitive to the temperature
profile and often to the surface skin temperature. Our approach is to solve sequentially
for the surface parameters, temperature profile, water vapor profile, and ozone profile in
that order. In this approach, variables already solved for, used in conjunction with first
guess variables, are kept fixed when solving for the next set of variables. Table 5.4.1 lists
the variables solved for and the number of channels used in each step. The above order is
chosen because channels can be selected for a given step that is relatively insensitive to
variables to be solved for subsequently. The general methodology described in Section
5.4 is identical to that shown in Susskind, et al., (2003). Some details have changed
however, based on experience using observed, rather than simulated, AIRS data. The

areas where modifications to Susskind, et al., (2003) have been made are indicated.

The iterative solution to the problem contains equations that are of the form of equation
5.3.13. However, the final product methodology solves for updates to coefficients of
functions of temperature, moisture, etc., rather than updates to the geophysical
parameters themselves. Therefore, the terms in the equation have a very different
meaning. For this reason, a different notation is used so as not to confuse the reader. For

example, in place of A in the analog of equation 5.3.13, which refers to the derivative of
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the radiance with respect to changes in a geophysical parameter, the sensitivity of the

radiances to changes in the coefficients of the expansion functions, S, is used.

Table 5.4.1. Variables and Channels

Variables Channels Frequency Ranges

Ground Temperature Retrieval

T,, 2 IR spectral emissivity 15 759 - 1228 cm’!
functions, 1 IR spectral bi-directional 10 2456 - 2659 cm’!
reflectance function; 1 MW spectral 5 23.8 - 89 GHz
emissivity function 1 150 GHz

Temperature Profile Retrieval

23 layer temperature- 50 664 - 760 cm’!
functions (trapezoids) 6 1238 - 1382 cm™
9 2387 - 2396 cm’
11 50.3 - 57.29 GHz
Water Vapor Profile Retrieval
10 layer column density functions | 938 cm’!
33 1310 - 1606 cm'™
8 2607 - 2657 cm'™
4 23.8 - 89 GHz
3 150 — 189.31 GHz
Ozone Profile Retrieval
7 layer column density functions 26 997 - 1069 cm'
CO Profile Retrieval
4 layer column density functions 20 2183 -2193 cm'
Cloud Clearing
4 unknown extrapolation parameters 33 672 -755 cm’
5 790 - 1133 cm’™
6 2420 - 2658 cm’
Cloud Parameters
2 cloud top pressures 33 672 - 755 cm™
2 effective cloud fractions per FOV 5 790 - 1133 cm™

Total: 57 variables 214 channels (AIRS + AMSU-A + HSB)
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A total of 195 AIRS channels, 15 AMSU-A channels, and 4 HSB channels are selected
for use in the AIRS/AMSU-A/HSB retrieval algorithm. Some of the surface parameter
sounding channels are also used in the water vapor or temperature profile retrievals.
Therefore, the total number of channels is less than the sum of the channels in column 2.
The 214 channels are used to solve for 42 variables. HSB failed early in the mission.
The HSB channels are not included in my processing step when AIRS is run in the
AIRS/AMSU-A only mode. Time periods before HSB failed were analyzed in both the
AIRS/AMSU-A/HSB processing mode and the AIRS/AMSU-A processing mode so as to

allow for consistency of products generated after HSB failed.

The general AIRS/AMSU-A/HSB retrieval algorithm does not require any field of view
to be cloud free (Susskind, et al., 1996). The algorithm used in the final product retrieval
consists of a number of steps. Before the full physical retrieval procedure begins, there
are a number of startup steps: (S1) Use the state resulting from the AIRS regression,
X(R), as an initial guess for the temperature, moisture, and ozone profiles. X®) was
computed using ligl), derived based on the microwave state XM, (S2) Derive an

estimate of the cloud-cleared radiances and clear-column-radiance noise covariance

matrix, ligz) and I\A/ISJ2 ), based on the geophysical state x®), (S3) X®) s now

improved to give the initial guess used in the physical retrieval process x© , and is also
used to generate li?) and I\A/Igf). This loop ends the basic startup procedure, that

precedes the physical retrieval process. The physical retrieval process sequentially
determines: (1) surface parameters; (2) temperature profile; (3) water vapor profile; and
(4) ozone profile. This improved state is used to derive the final cloud -cleared radiances
1%4) and channel noise covariance matrix I\A/Igj4) . Cloud parameters as well as OLR and
clear-sky OLR are derived based on retrieved geophysical state x® , or the microwave

x (M)

state , depending on quality control. A second pass physical retrieval is now

erformed usin liG) and I\A/I§-4) to improve the surface parameters and temperature
p g Ky ij p p p
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profile. A CO profile is then derived using the final state X®?) and 1%4) and I\A/Igj4) . A

flow diagram of the steps in the physical retrieval algorithm is given in Figure 5.4.1.

The general approach used in the physical retrieval algorithm to solve for all the
geophysical parameters is in the form of iterative, constrained least-squares solutions, one
for each set of variables to be solved for. The form of the equations to be solved is
identical for each of the four steps. The following sections described the details of all the

steps in the physical retrieval algorithm.

5.4.2 Overview of the AIRS Physical Retrieval Algorithm

AIRS has 2386 spectral channels. Different channels are used in different steps of the
AIRS physical retrieval process. Figure 5.4.2 shows an example of an AIRS spectrum.
All AIRS channels used in any physical retrieval step or in the cloud clearing step are
marked in Figure 5.4.2. Figure 5.4.2 includes channels sensitive to CH, profile, but this
retrieval step is not performed in Version 4.0 of the Science Team retrieval algorithm.
Table 5.4.2, lists all the AIRS channels along with AMSU-A and HSB channels, used in
cloud clearing or physical retrieval steps. AMSU-A channels 8-14 are all in the vicinity
of 57.29 GHz and all listed as such in Table 5.4.2. Also indicated in Table 5.4.2 are the

steps in which all channels are used.
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Derive Start-up State

X(0)
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) @) Physical Retrieval State 2 2
Regression State
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physics error v based on
estimate Microwave State
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X(z)

i

Apply Quality Control
Select Microwave State X™)
or Physical Retrieval State x®

Figure 5.4.1. Physical Retrieval Flowchart
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Average Ocean Clear Night AIRS Spectrum, indicating Retrieval Channels
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Figure 5.4.2. AIRS Channels, Physical Retrieval or Cloud Clearing
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Table 5.4.2. AIRS, AMSU-A, and HSB Channels, Physical Retrieval and Cloud

Clearing
viem 'orGHz) Templ Temp2 Strat Surf H,O O CC HGT CO
650.33 X
650.81 X
652.01 X
653.45 X
654.90 X
656.36 X
658.07 X
659.54 X
662.51 X
062.76 X
663.01 X
664.51 X X
666.26 X X
666.77 X X
667.27 X X X
667.52 X
667.77 X X X
668.03 X
668.28 X X X
668.53 X X X
668.79 X X X
669.04 X X X
669.55 X X X
669.80 X X X
670.06 X X X
670.57 X X
672.10 X X X X
677.53 X
681.46 X X X X
689.49 X X
689.76 X X
691.12 X X
691.39 X X
692.76 X X X X
693.03 X X X X
694.40 X X
694.67 X X
696.05 X X X X
697.71 X X
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viem 'orGHz) Templ Temp2 Strat Surf H,O O3 CC HGT CO

698.82 X X
699.10 X X

699.66 X X

700.78 X X X X
701.06 X X X X
702.46 X X

702.74 X X X X
703.87 X X X X
704.44 X X X X
706.14 X X X X
706.99 X X X X
707.85 X X X X
708.71 X X X X
709.57 X X X X
711.00 X X X X
711.29 X X X X
712.74 X X X X
714.19 X X X X
714.48 X X X X
715.94 X X X X
721.84 X X X X
723.03 X X
723.33 X X X X
724.52 X X X X
726.33 X X X X
738.48 X X
746.01 X X
747.60 X X
749.20 X X
750.48 X X
753.06 X X
755.33 X X
759.57 X X

790.32 X X
801.10 X

820.83 X

843.91 X X X
917.31 X

918.75 X

937.91 X X X X
965.43 X

979.13 X

997.11 X
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viem 'orGHz) Templ Temp2 Strat Surf H,O O3 CC HGT CO

998.39

999.67

1001.38

1003.54

1005.26

1006.56

1008.30

1010.48

1011.79

1013.11

1014.87

1016.64

1018.41

1020.63

1021.97

1023.31

1061.33

1061.81

1062.29

1063.26

1064.22

1064.70

1065.19

1068.58

lisitalislialialisitslialtaltalislialisitslisltalialtaltsltaltaltaltalls

1069.07

1092.42

1103.17

1114.64

1122.60

liasltalialts

1131.20

1133.91 X X

1228.23

b

1238.11

1251.36

elialts

1285.48

1310.18

el

1315.47

1330.98

ol

1334.61

1340.20

1367.25

1376.89

sl lialts

1381.21 X
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viem 'orGHz) Templ Temp2 Strat Surf H,O O3 CC HGT CO

1392.15

1397.13

1407.77

1419.15

1427.23

1432.47

1436.58

1468.83

1471.91

1476.25

1483.74

1493.22

1498.96

1502.17

1519.07

1521.05

1524.35

1541.77

1544.48

1547.20

1554.04

1556.10

1563.01

1569.29

1572.09

1586.26

ittt ittt bl il El bl Pl el P E E E E E F e E el e e e

1605.05

2181.49

2182.40

2183.31

2184.21

2185.12

2186.03

2186.94

2187.85

2189.67

2190.58

2191.50

2192.41

2193.33

2194.24

2196.99

slislislislislislisltslialisltslialtalialtalls

2202.51
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viem 'orGHz) Templ Temp2 Strat Surf H,O O3 CC HGT CO

2203.44

2204.36

2206.21

sl il

2207.14

2387.18

2388.15

2389.13

2390.11

2391.09

2392.07

2393.05

2394.03

PR PR PR PR PR PR R PR <
PR PR PR PR PR PR R PR <

2395.01

2419.83 X

2456.48

2492.08

2531.98

2561.13

lisltaltalle

2603.66

2607.89

b

2611.07 X

2616.38

olle

2622.79

2632.47

2637.87

olle

2643.30

2648.75

lisltalislialtalls

2656.42

2658.62

=
=

23.80

ol

31.40

50.30

ittt

52.80

53.59

54.40

55.50

57.29

57.29

57.29

57.29

57.29

lislisltalislislisltalialialts
slislisltalislislialtalialialts
lislisltalislislialtalialialts

57.29
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viem 'orGHz) Templ Temp2 Strat Surf H,O O3 CC HGT CO

89.00 X X
150.00 X X
183.31 X
183.31 X
183.31 X

5.4.2.1 Steps in the AIRS Final Product Algorithm

The AIRS final product algorithm is comprised of a number of sequential steps listed

below. All steps start from the conditions found in the previous step, with appropriate

computed uncertainty estimates, D (see Section 5.4.9), unless otherwise noted.

1. Use as a starting point the microwave product which agrees with the AMSU-A and
HSB radiances (Rosenkranz, 2000). This provides initial values of temperature and
moisture profiles, surface skin temperature, microwave spectral emissivity, and liquid
water, Wjjq. The initial value of Wj;q is held fixed in all subsequent retrieval steps.

This is followed by a temperature profile retrieval using AMSU-A radiances as well as
AIRS radiances for stratospheric sounding channels that never see clouds to update the
temperature profile. As part of this temperature profile retrieval, the surface skin
temperature and microwave spectral emissivity is also updated. The geophysical
parameters retrieved in this step are called the MW/strat IR retrieval. To the extent that
HSB channels are present, the option exists to then perform a moisture profile retrieval
using HSB channels.

2. Determine initial cloud cleared radiances li} (as in Section 5.2) using the atmospheric
and surface parameters obtained in Step 1. A cloud parameter retrieval is also
performed to help determine which IR channels are not affected by clouds. These
cloud parameters are also taken as the final cloud parameters if the combined IR/MW
retrieval is not used (see Step 16). The AIRS channels used in the cloud clearing and
cloud parameter retrieval steps are shown in Table 5.4.2. Short wave window channels
aid in cloud clearing during the day because clouds appear warm in shortwave window
channel as a result of solar indication reflected by the clouds. Clouds generally appear
cold in the longwave window channels however. Thus, cloudier cases can be more
easily distinguished from colder cases. For the same reason, the shortwave window
channels are not used in the cloud parameter retrieval step because of the difficulty in
the physical modeling of the effects of sunlight reflected by clouds.

3. Determine the first guess IR surface parameters and temperature-moisture-ozone profile

using li} based on a regression step using 1524 AIRS channels (as in Section 5.3).
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Produce an improved temperature profile and microwave spectral emissivity, starting
from the surface and atmospheric parameters determined in step 3, using the AMSU-A
channel radiances and AIRS channel radiances which do not see clouds. The AIRS
channels used in this step are listed in Table 5.4.2 under the column marked Strat. The
surface skin temperature is not updated as it is estimated better from AIRS radiances
than can be determined from AMSU radiances. This retrieval step is referred to as
AMSU/strat IR.

Determine updated cloud-cleared radiances, lilz , taking advantage of the geophysical

parameters determined in Step 3. lilz is considerably more accurate than li} because

the surface and atmospheric parameters obtained from the AIRS regression step are
more accurate than those from the microwave first product, especially the infra-red
surface spectral properties which are not determined from the microwave retrieval.

Perform a surface parameter retrieval using AIRS surface-sounding channels shown in
Figure 1 along with AMSU channels 1, 2 and 15. This produces a new skin temperature,
IR and microwave spectral emissivity, and IR spectral bi-directional reflectance.

Determine li? and new cloud parameters using the geophysical parameters determined
in Step 6.

8.-11. Use li? to sequentially determine surface parameters, temperature profile, humidity

12.

13.

14.

profile, and ozone profile using the appropriate channels shown in Figure 1. AMSU-A
temperature sounding channels 3-6 and 8-14 are also included in the determination of
the temperature profile. AIRS and AMSU channels used in the first pass temperature
retrieval are listed in Table 5.4.2 in the column Templ. The results of these steps are
called the first pass retrieved products.

Update the temperature profile, using only AMSU-A radiances and AIRS channel
radiances insensitive to clouds. This profile is also used in the application of quality
flags and is referred to as the test microwave only retrieval.

Using the first pass retrieved products and updated temperature profile, determine lif ,
and the final cloud parameters.

Repeat steps 8 and 9 using lif to obtain the final product surface parameters and
temperature profile. The initial guess used in the second pass surface parameter and
temperature profile retrievals is identical to that of the first pass but all other parameters
are updated, such as the clear column radiances, moisture profile, etc. The channel
noise covariance matrix is also updated to account for better estimates of the other
parameters. In addition, channels in the water vapor band which are highly sensitive to
lower tropospheric water vapor are included in the final temperature profile step (but
not the first pass) because an accurate moisture profile has now been retrieved. These
channels are indicated in the AIRS channels used in the second pass temperature
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retrieval under the column Temp2. The moisture profile and ozone profile retrieval
steps are not repeated, as no appreciable improvement in parameters resulted from
further retrieval steps. The geophysical parameters retrieved from this step and the
following steps are called the combined IR/MW retrieval.

15. Determine the CO profile using channels listed under CO in Table 5.4.2.

16. Determine whether products derived in Steps 1 and 2 (MW/strat IR retrieval) or 13 and
14 (JIR/MW retrieval) should be reported. Apply quality control flags to all retrieved
parameters.

17. Compute OLR and clear sky OLR using the appropriate state, either from Step 14

geophysical parameters and Step 13 cloud parameters, or Step 1 geophysical
parameters and Step 2 cloud parameters.

5.4.3 General Iterative Least Squares Solution

An iterative approach is used to linearize the radiative transfer equation about the n"

iterative parameters X?H . The iterative retrieval process described here is different

from the use of different passes in the determination of m. The values of lii used in the
iterative retrieval loop are held fixed in a given pass. The n+1" iterative estimate of X,
is expanded according to

X?+IZX?+ZFKJAA% =X2+ZF€JA51 5.4.1

J J
=1 =1

where the columns of F represent a set of functions, Xg is the initial guess, and A? are

corresponding coefficients given by

Al = AT+ AAT 5.4.2

which together with Xg determine the solution. A solution is found that attempts to

minimize the residuals A®} weighted inversely with respect to expected noise levels for
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the channels used to determine A;. The residual for channel i is defined by

-1
\ dB
a0l =(R; —R{l)(—) 5.4.3

where R; is the reconstructed clear column radiance, R} is the radiance computed from

the n" iterative parameters, and O] is the brightness temperature computed from the n”

iterative parameters. The nth iteration residual for channel 1 is attributed to errors in the

coefficients, ESAE1 , and to noise effects, i.e.,
AG] =TS AT +6; 5.4.4
J

where S;; is an element of the sensitivity matrix or Jacobian given by

RM (dB)™!
AjLEHer

The noise factor (:)i for a given case has two parts: errors in observed cloud-cleared
radiances 00;, which are affected by instrumental noise and cloud clearing errors, and

computational noise 365 .

In Susskind, et al., (2003), dealing with simulated data, a perfect knowledge of physics is
assumed, i.e., if all the variables were known exactly, the exact noise free radiances are
computed. Nevertheless, the transmittances depend on the variables to be solved for.
Therefore, computational noise exists. Computational noise, arising from errors such as
too low (high) an estimate of atmospheric water vapor, produce noise that is correlated

between channels. Instrumental noise is uncorrelated from channel-to-channel but cloud-
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clearing errors are correlated from channel-to-channel.  Therefore, the channel noise

covariance matrix has both diagonal and off-diagonal matrix elements.

Each retrieval step uses an appropriate channel noise covariance matrix

N ylrdB, Y!
dT Jo | dT |

! i

where M is defined in Equation 5.2.25 and M is discussed later. The values of Mj;

depend on the pass. A general form of the solution to this problem is given by
-1 _
AA" =[ST WS"+H" | 8™ Wae" = M"A@" 5.4.7

where AA" is the vector of updates to the expansion coefficients, A@" is the vector of

channel residuals, W is a shorthand for M ,and H" is a stabilizing or damping matrix

used to constrain the otherwise ill-conditioned inverse problem.

Hanel, et al., (1992) and Rodgers (1976) have reviewed several methods of constraining
the ill-conditioned inverse problem. In the minimum variance approach (Rodgers, 1976),
H is taken to be the inverse of the a priori error covariance. If the statistics of both the
measurement and a priori are Gaussian, the maximum likelihood solution is obtained. If
the a priori covariance is taken to be H =yI , the maximum entropy solution is obtained.
Other forms of H include the first or second derivative formulations (Twomey, 1963) that
force a smoothness constraint on the solution. These formulations all weight the a-priori
information into the final retrieved state to some extent. The solution can also be
constrained by the relaxation method (Chahine, 1968) and by the Backus and Gilbert
(1970) method.

The minimum variance and maximum likelihood solutions are often considered to be
s " . o . . .

optimal." However, if the a priori error covariance is not known or estimated
incorrectly, the solution is sub-optimal. If the a priori errors are underestimated, the

solution is over constrained. Potentially, this creates biases in the retrievals. The biases
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mask small trends in the retrieved data that scientifically important. The approach
described here attempts to keep the effects of instrument noise at a tolerable level without

assumptions regarding the a priori data error covariance.

5.4.4 Transformation of Variables

As a consequence of stabilizing the ill-conditioned solution, the addition of H also has the
effect of damping the potential information content of the radiances, reducing the values
of AA. The variables are transformed to apply a constraint such that the well-determined

components of the variables are solved for without appreciable damping.

If a different set of functions were chosen which are linear combinations of original

functions, 1.e.,
G=FU 5.4.8

where U is a unitary transformation (UU’=1), and the solution was expanded in the
same way as in Equation 5.4.1 with unknowns AB", one obtains the equation
X" = X" + GAB" = X" + FUAB" = X" + FAA" 5.4.9

In the new basis set, the transformed Jacobian is given by

-1
T = aRn (d—Bj =S"U 5.4.10
oB" \dT Jg

The constrained solution, as given by Equation 5.4.7, in terms of this new set of

functions, is given by

-1
AB" = (T'“ WT" + H) " W(A@n _ 8@“‘1) —U'AA" 5.4.11

An additional term 80"! has been included in Equation 5.4.11, and represents an
iterative background correction term that is zero in the first iteration (it is discussed

further below).
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U" is selected such that T""W"T" =U’S’WSUis diagonal with real non-negative

eigenvalues k?. The inverse of each eigenvalue is the variance in that eigenmode. The

-1

total variance is the trace of (US’ WSU) . The unconstrained solution (H=0), with no

background correction (8(9“_1 = O) , 1s then given by

-1
~miAe" 5.4.12

NHOSE 3T} W 407 - (A7)
i

J

where rﬁ? is the vector corresponding to the jth row of T'W .

In general, the ill-conditioned cases arise from those components of G having low
information content and small eigenvalues (high variance), indicating that those
components are not well determined from the observations alone and need damping.
Components with large eigenvalues are quite well determined and require little or no
damping to achieve a stable solution. If H is chosen to be a diagonal matrix with values

A\, the constrained solution with no background correction term is given by

AB! (A}Jl ): (xgl +AND )_l miAe" 5.4.13

The coefficients ABE1 (A?»?) are therefore damped from the unconstrained coefficients

AB'(0) by
( Y
AB? (AAD )= ——— ABY (0) = ®"AB" (0) 5.4.14
] J n n J ] ]

where ®; can be thought of as a filter or damping function. This formulation is the same

as the maximum entropy solution, applied in transformed space, if AA is set equal to a
constant. However, instead of using a single constant AA for all eigen functions, a

different value is computed for each eigenfunction. For well-determined eigenmodes,

138



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

A\ is set equal to 0. This has the consequences of giving no weight to the a priori. For
modes that are not well determined by the measurements, AA is determined in such a

way as to limit the propagation of instrument noise to a pre-specified amount. The

determination of A?\,? is discussed in detail in the next section.

5.4.5 Application of Constraint

The residual A®} can be thought of as having both a signal and a noise component, i.e.,

NCHEYNC N 5.4.15

The component of AB; that arises from the propagation of channel noises, ©;, is given
by
~ 1 ~
887 (A7 )= (17 +an] ) [T w6, 5.4.16

A statistical estimate of 5]~33-1 over an ensemble of profiles can be obtained by

87 = [6@“51”3“'};/2 ~(em)’ [TweewT] "

}Lnj/Z ) 5.4.17
—X(Ijli—M?—‘D? (kjl) 1/2

because ©@'=M=W~!. This formulation of 8A is similar to that given by Rodgers

(1990). If A?\,? were zero, 5]~33-1 becomes large if X? is small. A?\,? is selected such that

5]~33-1 is less than or equal to a threshold value. If 5]~33-1 is allowed to be no more than

A2 —8Byaxh
J J otherwise.

OBpax > then AL j is set to zero if Kj > SBR/%AX and A?Lj =

For example, if 8Bpjax =0.5, the resultant value of AL; is set equal to O for A; 24,
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and if 8Byax =1, AA; is set equal to O for A; 21, corresponding to damping (non-zero

values of AA j) for fewer eigen values.

Constraints are only applied to those eigenfunctions with lower information content than

the critical value corresponding to 0Byjax . The value of 8Byjax has been determined
empirically for each type of retrieval. In Version 4.0, 0Byjax = 1 in the AMSU-A
temperature retrieval step, dByax =0.35 in the AIRS surface temperature retrieval step,
OBpax =1.2and 1.0 in the AIRS temperature and moisture profile retrieval steps
respectively, and 0Byjax =4 in the ozone profile retrieval step. The computation of all

matrix elements shown above, including A and AA, is done in each iteration.

5.4.6 Formulation of the Background Term

The need for an iterative process arises because the radiative transfer equation is not

n

linear. In every iteration, ©; ,S", U™ and A" are each recomputed. If the solutions were

completely linear, and no damping was applied, then

A®n+1(0) = AO" —S" U" AB"(0) 5.4.18
Under these conditions, ABn+1(O) would be zero because AB"(0) already matched the
residuals and A@™*!' would be zero.

Equation (5.4.18) is not exact, because on the one hand, @nH(O) is not given exactly by

O" +S"U"AB", and also because ABE1 # AB?(O). As a result of applying ABE1 rather

than ABE1 (0), which would have minimized the radiance residuals,

AO™! < A@™(0)+S" UM [AB“(O) - AB“} = A0"1(0) + 50" 5.4.19

In Equation (5.4.19), A®n+1(0) represents the portion of A®"™! that is due to effects of

non-linearity on the solution, while 3@" represents the residual portion of AO™! due to
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the effects of damping in iteration n. The second term is zero for undamped modes and
increases in significance with increased damping. This term is also zero for all modes in

the first iteration.

It is desirable to include the effects of non-linearity in the iterative procedure used in the

determination of AB". Therefore, the background term to be used in Equation 5.4.12 is

given by

36" =" U"| AB"(0) - AB" |
and we solve for AB?Jrl according to

-1
AB?H _ (K?H + A?\,EH_I) U/n+1 S/n—i-l Wn+1 |:A®n+1 _ 8®n:|

-1
= o™ ABM(0) - (xg‘“ + Axg‘“) 5.4.20

. |:U,n+1 S,n+1 Wn+1 gnpyn (AB? 0)— AB?):|

whereABE1 is the value of AB; which was applied in iteration n. Inclusion of the

background term in Equation 5.4.20 ensures second order convergence along the lines

discussed by Rodgers (1976) with regard to treatment of the a priori term.

5.4.7 Convergence Criteria

Solving Equation 5.4.20 finds solutions to the radiative transfer equations which
minimize weighted residuals of observed and computed brightness temperatures,
corrected for the background term. To test convergence of the solution, the weighted

residual is monitored

, 1/2
R=[(A®—8®) V'V(A@—S@)} 5.4.21
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where the weight matrix V accounts for noise effects on the channel residuals, as well as
the relative information content of the channels with regard to the variables being solved
for. For example, if a channel (or linear combination of channels) carries little
information content in terms of signal-to-noise, it is given little weight in the estimation
of the residual in Equation 5.4.21. An appropriate choice of V, expressing the

information content of the channels is
_1 ,
V=Aj+A%)) (T'W) 5.4.22
in which case we obtain

R =[AB'AB]? 5.4.23

As shown in Equation 5.4.23, a reasonable way to determine if the solution has

converged, in terms of weighted residuals, is to see if the solution converges in terms of
the iterative changes in the solution itself. Initially, we set AB j= 0 if q)g <0.05, that is,
coefficients of very heavily damped components with little information content are given

no weight. The solution is said to have converged when the RMS value of ABE1 is less

than 10% of the RMS value of 8B™ for all components not set equal to zero. The

iterative procedure is also terminated if the RMS value of ABE1 is not less than 75% of

AB?Jrl for the non-zero components. This indicates the solution is not converging

rapidly enough and is responding primarily to unmodeled noise. The iterative procedure,

which usually converges in 3 iterations, is carried out analogously for all retrieval steps.

5.4.8 Retrieval Noise Covariance Matrix
The matrix W used in Equation 5.4.11 is the inverse of the retrieval noise covariance

matrix, M(W =M"! ) The matrix M is given by a sum of two terms

N ylrdB, Y!
dT Jo | dT

i

J
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A

where M represents the error covariance in the reconstructed cloud-cleared radiances

and M represents the error covariance in the radiances computed from the estimated

profile, as a result of errors in parameters assumed known (being held fixed) in a retrieval

A

step. M is given in Equation 5.2.35.

The computational noise covariance matrix M is designed to account for errors in the
computed cloud free radiance expected for a given state, R}, resulting from errors in the

geophysical parameters held fixed in the retrieval step. M is modeled according to

2
2 2
W = x| 2R 5XI | +(0.1)? 4B +(Mphys)Z B; 5.4.25
and
~ JR; dRy 2
M,y = L1 5x% 5.4.26
! %axj aX;
where i represents the derivative of R{' with respect to parameter X j and ESXE1 is

J
the estimated uncertainty in parameter X; in iteration n. The parameters used for X; in
modeling M represent uncertainties in surface skin temperature, surface emissivity,
surface reflectance, temperature profile, and water vapor and ozone profiles. The

i

derivatives are computed empirically for those variables held fixed in a given

J
retrieval step. The term 0.1 in Equation 5.4.25 is taken to represent additional unmodeled

errors. Details of how these uncertainties are computed for each pass are given later.
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5.4.9 Variable Channel Selection

5.4.9.1 Surface Parameter Retrieval

Channel radiances depend on several unknown surface parameters: the surface skin
temperature (Ty); the spectral emissivity, €(v), and spectral bi-directional reflectance
p(v); and the microwave spectral emissivity €,,(v). The surface parameter retrieval step
uses 25 infrared window channels, 5 AMSU-A window channels, and 1 HSB window
channel included in the spectral ranges shown in Table 5.4.1 and listed in the column
marked surf in Table 5.4.2. The AIRS channels used in the surface parameter retrieval
step are indicated by the orange stars in Figure 5.4.1. Inclusion of the microwave
window channels stabilizes the surface parameter retrieval and also provides one piece of
information about modifying the microwave spectral emissivity provided by the

microwave product (generated in step 1).

In the surface parameter retrieval, infrared window channels are selected from both long-
wave and short-wave infrared window regions, generally avoiding even weak absorption
lines. For window channels, the transmittance at the surface, T(py), is generally close to
unity. Although the opacity of infrared window channels is small, there is absorption and
emission due to the water vapor continuum and the nitrogen continuum, both absorbing
primarily in the lowest portions of the atmosphere. Therefore, the radiance in window

regions depends not only on T &(v), and p(v), but also on the temperature and moisture

in the boundary layer. The radiances of window channels do not depend appreciably on
temperature and moisture above the boundary layer. To account for the additional
dependencies in the surface parameter retrieval, two additional variables can in principle
be solved for by scaling the total precipitable water (Afn W) and shifting the air
temperature (ATpr). We do not do this however because it is felt that the regression

step produces accurate enough boundary layer temperature and moisture profiles for use
without further modification. A few channels centered on weak water vapor absorption
lines are included in the surface parameter retrieved in the 3.7 ym window which are
sensitive to water vapor absorption as well as reflected solar radiation. The reflected solar

radiation causes the surface to appear hotter than in other window regions not affected by
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reflected solar radiation. Inclusion of these channels helps distinguish between changes in

T,,¢€,and p during the day. Several of the shortwave window channels in the surface

parameter retrieval are also used later in the moisture profile retrieval. They are
particularly sensitive to boundary layer water vapor during the day, and improve

retrieved boundary layer water vapor given an accurate value of p.

A total of five variables are solved for in the surface parameter retrieval for daytime cases
and four for nighttime cases. The perturbation functions include a perturbation toT, a
perturbation to each of 2 infrared spectral emissivity functions, 1 spectral bi-directional
reflectance functions (during the day), and 1 piece of information about a perturbation to
the microwave spectral emissivity. The values of the perturbations are selected to give

comparable values of the S matrix for a typical case. If all perturbation functions F;
were half as large, Sj; would be half as large for each mode, and the solution vector
AA; would be twice as large. The perturbations are large enough to produce significant S

matrix elements, but not so large as to produce an appreciable non-linear response.

The Jacobian or sensitivity matrix S" is computed every iteration. The partial derivative
of channel radiance with respect to the coefficients of each of the above functions are

computed empirically as follows: (1) Compute the i" channel radiance

th
using the n" iteration parameters (i.e., Ty, €"(v),p" (Vv), etc.) (2) Compute the i channel

transmittance (if necessary) and radiance using the n" iteration parameters but setting the

coefficient (AAj;) of perturbation function F; to unity. (3) The sensitivity S;;, related to

ij»
the change in channel radiance per unit change in coefficient AA;, is given by the

difference in radiances computed in steps (1) and (2), divided by (dB/ dT)Gp. The

sensitivity or partial derivative of radiance with respect to surface temperature, spectral
emissivity, and surface bi-directional reflectance can be computed theoretically by
differentiating the clear column radiative transfer equation because the transmittance

functions do not depend on these parameters.
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After the sensitivity matrix is computed, the inversion procedure described earlier

proceeds. In the surface temperature retrieval, as well as in all other retrieval steps, an

empirical term, Mp-hys , which is of unmodelled component noise, is included in Equation
p ij p q

5.4.26. Mghys will be discussed in detail later. The retrieved values of T, €(v), and

p(v) are held constant and used in the subsequent iterative steps for temperature,

moisture, and ozone profile retrievals.
5.4.9.2 Temperature Profile Retrieval

The temperature profile retrieval problem is set up and solved in a manner completely
analogous to the surface parameter retrieval. The solution for the retrieved temperature

profile is written in the form

J
T"(p)) =T () + T Fi(p))AT =T%(p,) + FA 5.4.27
=1
where ¢ ranges over the number of levels used to compute channel transmittances and
radiances, and j ranges over the number of functions that are solved for, currently set to
23. The functions in the surface parameter retrieval are taken as discrete changes in
different surface or atmospheric parameters. Following the approach of the surface

parameter retrieval, the functions Fj are selected as localized functions of pressure,
corresponding to changes in temperature primarily in a layer from p; to p;_ ;. Use of

localized functions is convenient for computing the S matrix and makes the problem
more nearly linear. The methodology discussed previously does not require the functions
to be orthogonal. In order for the solution to be continuous, the functions chosen are

trapezoids, with a value of 0.5K between p; and p;_; and falling linearly in log p to 0K
at pj4q and p; . The highest and lowest functions in the atmosphere are special cases,
with values of 1K at the upper or lower limit of the atmosphere (0.016 mb or the surface),

0.5K at the adjacent pressure, and followed by 0 K at the next pressure level.

The Jacobian matrix is computed exactly as in the surface parameter retrieval. In any

iteration, transmittances and radiances are computed for the temperature sounding
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channels using T"(p) and T"(p)+F:(p), where F:(p) is one of the trapezoids, and the
g P P ip j

Jacobian is obtained empirically according to

sh = [Ri (Tn(p) + Fj(p)) R, (Tn (p))}(%) : 5.4.28
6
It can be shown that for an opaque temperature sounding channel, a shift of the entire
atmospheric temperature profile by 1K will cause roughly a 1K change in brightness
temperature (Susskind, et al., 1984). Moreover, a localized change of 1K in an
atmospheric layer containing the non-zero part of the channel's weighting function
likewise results in a 1 K change in brightness temperature. This brightness temperature
change decreases as the layer becomes thinner than the weighting function. To insure
sensitivity of at least one sounding channel to changes in the layer (or trapezoid)
temperatures, layers are selected to be sufficiently coarse as to have an element of the S
matrix of at least 0.2 for the layer. While the Jacobian is profile dependent, the layer
structure used to define the trapezoid functions is held fixed for all soundings. They are
selected so as to be neither too thin, resulting in lack of sensitivity, nor too coarse,
resulting in lack of resolution. The pressure boundaries for the 23 functions used are
shown in Table 5.4.3. According to Equation 5.4.28, the only structure in the solution
with finer spacing than these pressure boundary levels must come from the initial guess.
The procedure of transformation of variables and use of damping functions designed to
stabilize the solution, as discussed earlier, further decreases the ability of the solution to
discern fine structure not contained in the information content matrix S'WS.  This

damping is profile dependent.

In the first pass temperature profile retrieval, channels are selected which are relatively
insensitive to the ozone and water vapor distribution. An estimate of these variables is
given by regression, but this is not considered to be of high enough accuracy to allow for
use of channels highly sensitive to these parameters in the first pass physical temperature
profile retrieval step. The temperature-sounding channels used are generally selected
between absorption lines to optimize the channel weighting functions (Kaplan, et al.,

1977). Along the lines of Kaplan, et al., (1977) and outlined in Table 5.4.1, the retrieval
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uses 50 channels in the 15 ym CO, band. These include the Q-branch near 666 cm™ to
sound the mid to upper stratosphere and channels between CO, absorption lines to sound
through the upper troposphere. In addition, 9 channels in the CO, 4.2 ym band R branch
in the vicinity of 2388 cm™ are used to sound the mid- to lower troposphere. It was found
that the R branch channels at frequencies less than 2386 cm™ were affected significantly
by non-LTE during the day and they are currently not used in the retrieval process. There
are also 11 AMSU-A channels included (AMSU A channels 3-6 and 8-14 from Table
2.3) in the temperature profile retrieval. AMSU A channel 7 contains excessive noise and
is not used in any retrieval step. All channels used in the first pass temperature profile
retrieval step are indicated in Table 5.4.2 in the column Temp 1. The AIRS channels are

marked by red stars in Figure 5.4.1.

Table 5.4.3. Trapezoid or Layer Endpoints

Temperature Retrieval Moisture Retrieval  Ozone Retrieval CO Retrieval
0.016 0.016 0.016 0.016
0.714 170.1 20.92 300.0
1.297 272.9 51.53 407.5
2.701 314.1 71.54 575.7
4.077 343.6 103.0 surface
8.165 407.5 142.2

16.43 515.7 300.0
23.45 617.5 surface
39.26 706.6
56.13 852.8
71.54 surface
96.11

125.6

160.5

212.0

272.9

343.6

424.5

490.6

596.3

661.2

729.9

878.6

surface

*If the lowest layer is less than 50 mb thick in any step, it is combined with the layer
above.
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Errors in the estimate of the water vapor profile, ozone profile, and surface parameters
used to compute expected radiances in the temperature profile retrieval step produce
errors in the computed brightness temperature for a given channel, as well as correlated

brightness temperatures errors in radiances computed in other temperature sounding

channels. These errors are accounted for in the noise covariance matrix M; given in

Equations 5.4.25 and 5.4.26.

Incorporation of these terms into the noise covariance matrix has the effect of making
channels sensitive to water vapor absorption, ozone absorption, and/or the surface
temperature appear noisier than the value given by their instrumental noise. It should be
noted that in general, the mid-tropospheric sounding 15 gm channels, which are sensitive
to water vapor absorption, will be "noisier" for humid cases than for very dry ones, while
uncertainty in water vapor profile will have a smaller effect on the 4.2-ym radiances.
Conversely, 4.2-ym channels are “noisier” during the day than at night due to effects of

uncertainty in the surface bi-directional reflectance.

The estimated errors in surface parameters and temperature profile are included in the
noise covariance matrix in the subsequent steps of water vapor profile retrieval and ozone
profile retrieval, and the estimated error in water vapor profile is also included in the
ozone profile retrieval, but not in the water vapor retrieval because water vapor is the
variable being solved for. Effects of estimated errors in the temperature profile are also

included in these subsequent steps.

The temperature profile retrieval step described above (step 9) is done after the
AMSU/strat IR temperature profile retrieval (step 5) subsequent to the regression (step 4)
has been completed. That AMSU/strat IR temperature retrieval step is analogous to the
temperature retrieval step described above, but uses only AMSU-A channels and
stratospheric AIRS temperature sounding channels which do not see clouds. The
AMSU/strat IR temperature profile retrieval step solves for one piece of information
about the microwave spectral emissivity as well as coefficients of 13 temperature
perturbation functions. Less functions are used in the AMSU-A temperature retrieval

step because there is considerably less inherent vertical resolution in the troposphere
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when only AMSU-A channels are used with the stratospheric sounding AIRS channels,

as compared to using tropospheric AIRS temperature sounding channels as well.
5.4.9.3 Water Vapor Profile Retrieval

Unlike surface parameter and temperature profile retrievals, the water vapor profile
retrieval problem is highly non-linear. A change in water vapor abundance in a given
level affects the transmittance in that layer as well as the atmospheric emission and
absorption at all lower levels in a complex manner. The solution for the retrieved

moisture profile is expressed as

J
qQ"(p)=q" (Pz){l"' Zl Fj(Pg)A?:la 5.4.29
J:

where ¢ ranges over the 100 levels used to compute transmittances and radiances, and j

ranges over J solution functions. The functions Fj(p,) are expressed as trapezoids with a

value of 0.05 in coarse atmospheric layers, in a manner analogous to that described above
for the temperature profile retrieval. The endpoints of the 10 trapezoids used in the
moisture profile retrieval are included in Table 5.4.3. The highest trapezoid has a value
of 0.05 at 170.1 mb and 272.9 mb and O at .016 mb and 314.1 mb. The lowest function is
comprised of two straight lines, with a value at the surface and 852.8 mb of 0.05, and a

value of 0 at 706.6 mb.

In the moisture retrieval, we primarily use channels between absorption lines in the 6.3
pm water vapor band that are sensitive to humidity throughout the troposphere. These
channels provide sharper weighting functions (more localized absorption) than centers of
strong lines and make the problem more linear. In addition, some channels are used on
the peaks of the strongest absorption features in the 6.7-ym band, which are sensitive to
stratospheric water vapor. One channel is also included in the 11-gm window which is
sensitive to the water vapor continuum and improves the sounding capability for lower
tropospheric humidity. Channels in the 3.7-ym window provide improved sensitivity to
low level moisture during the day as discussed previously. The AIRS channels used in

the water vapor retrieval step are shown by green stars in Figure 5.4.1 and indicated
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under H,O in Table 5.4.2. The S matrix is computed empirically exactly as in the
temperature profile retrieval. The parameters determined from the surface and

temperature profile retrievals are kept fixed in the calculations.

In constructing the noise covariance matrix, terms for uncertainties in surface properties
are included, as in the temperature profile retrieval, as well as a term representing
radiance uncertainties due to a perturbation of the entire temperature profile, as done in
the noise covariance matrix used in the determination of n (Equation 5.2.9). These terms

will be discussed in Section 5.5.
5.4.9.4 Ozone Profile Retrieval

The solution for the ozone profile retrieval has the same form as that for the moisture
profile retrieval. The ozone profile retrieval uses 7 trapezoid functions with values of
0.05, as in the water vapor retrieval. The end points of the trapezoids are included in
Table 5.4.3. The same steps outlined in the previous section are used to compute the
Jacobian. It is critical to solve for water vapor before ozone because ozone channels are
sensitive to absorption by boundary layer water vapor. There are 26 channels in the 9.6
pm ozone band selected for the ozone retrieval. These channels are shown by the blue
stars in Figure 5.4.1 and indicated in Table 5.4.2 in the column marked O;. Uncertainties
in surface parameters, temperature profile, and water vapor profile are included in the

0zone noise covariance matrix.

5.4.9.5 CO Profile Retrieval

The retrieval of CO profile is totally analogous to that of the other constituents. 20 CO
sounding channels are used in the retrieval process, 4 perturbation functions are used, and

AB.x 18 set equal to 1.7. The channels used are indicated in Table 5.4.2 under the

column CO and the endpoints of the trapezoids are shown in Table 5.4.3. The regression
step does not generate an initial guess CO profile. A fixed zonally dependent mixing

ratio is used as the CO initial guess.

151



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

5.4.10 Estimation of State Errors and their Effect on the Channel Noise
Covariance Matrix

1
dT(p)

contribution of errors in computed radiances resulting from expected errors in state

Equations 5.2.9 and 5.4.26 contain terms such as O0T(p), representing the

parameters used in a given pass and step. These errors are case dependent and can be
estimated by propagating expected errors through the retrieval system. In addition to
being used in the generation of the channel noise covariance matrix, the expected state
errors are useful in their own right and are reported along with the retrieved state. The
following sections show how the expected state errors and their contributions to

Equations 5.2.9 and 5.4.26 are computed.

5.4.10.1 Propagation of Errors

In any iteration, the estimate of a parameter, such as T(p)™, is given by

L
0 m

T(p)}" =T(p); + X F)A
] 32t 5.4.30

=T(p)! +(FUB™); |

where j is a discrete pressure level. There are three contributions to the expected error
8T(p)3-n. The first contribution comes from the null space error, arising from the error of
the first guess in the space outside that of the L functions used to expand the solution.

The second component arises from errors in the coefficients B™ . The last contribution
arises from the damping of the solution in which (1-®) of the first guess (or previous

iteration) is believed for each eigen function, G=FU.

Equations 5.2.9 and 5.4.26 contain radiance uncertainties resulting from the square of the

2
expected error in state parameter Xgn , 0 Xgn , which can be expressed in terms of errors

in the expansion coefficients A according to
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2 2 2
5XM =X + T FZ 5AD 5431
J J J
k
where 8XN is the null space error and SA™ is the error in the coefficients A™ used to

J

represent X™ . Errors in A arise both from errors in the B coefficients and errors in the
damped portion of the m-1 iterative guess. In every step in the retrieval process, we

0

begin with parameters x9 having an uncertainty 06X ]

The uncertainty of the
microwave product first guess is specified based on expected errors, as is the null space

error. Given SXO, SAO can be solved for according to

1/2
BAkO _ |:(F,2 F2 )—1F12 (SXO _ SXN )Zi|

5.4.32
n i 1/2
_ { (F,z F2 ) 2 (SXO )Z}
In a given iteration, we can express SA{(H according to
5 1/2
m 5.4.33

2

L] _ 2

SAM =3, Uy —= +2€(Uk€(1—q>fm)zhuj€5A§n 1} +3AN
j

o

o
i

second term represents the portions of the errors SB?_

represents the predicted error in B%n due to noise propagation, and the

I of the previous iterative profile

which are believed in the current iteration. Given SA{(n from Equation 5.4.33 for the

final iterative step, we compute the square of the corresponding profile error to be used in
Equations 5.2.9 and 5.4.26 according to Equation 5.4.31. This term is carried to the next

0

retrieval step and used in Equation 5.4.32 to give A}~ which is in turn used in Equation

5.4.33 to generate the uncertainty in parameter X for use in subsequent steps.
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For moisture and ozone profile, the form of the expansion is slightly different (see

Equation 5.4.29) and we write

2 2
N m
89 () | _| %9 () +2Fk2(1’)5 Akm2 5.4.34
q q k

Surface spectral emissivity and bi-directional reflectance are analogous to temperature
profile, as is skin temperature, in which case F is a number. The liquid water profile
comes from the microwave product and is not iterated. We assume an error estimate of
10% of the liquid water profile. In addition, if the total liquid water is less than 0.01
g/cm’, we consider the possibility that liquid water may have been missed due to an error
in the water vapor microwave solution. For these low liquid water solutions, an
alternative error estimate of (2*RH-1)*0.05*q, where RH is the relative humidity and q is
the layer water vapor in mg/cm’, is considered and used if it is larger than 20% of the
liquid water. The null space temperature error is taken as 0.1K above 40 mb and below
200 mb, increasing linearly in log p to 0.2K at 100 mb. The null space error in percent is
taken as 5% for water vapor and ozone above 40 mb and beneath 200 mb, with values of

10% and 50% at 100 mb for water vapor and ozone respectively.

Equation 5.4.33 is case dependent through the parameters ®, and A ¢ Wwhich depend
both on the S matrix, and more significantly on the M matrix. M contains contributions

from clouds, M, and parameter uncertainty M. The uncertainties in parameters

determined from Equations 5.4.33, 5.4.31, and 5.4.34 in turn are used in the computation

of the matrices M (Equation 5.4.29) and N (Equation 5.2.9).
5.4.10.2 Contribution of State Errors to the Channel Noise Covariance Matrix

Equations 5.4.31 and 5.4.34 give the magnitude of the estimated error in each parameter

but contain no information about sign. If we assume all dX(p) are of the same sign, we

would overestimate the effect of the uncertainty on that parameter on the computed

radiances, because retrieval process errors are negatively correlated over some layers of
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the atmosphere. Bearing this in mind, when the derivatives in Equations 5.2.9 and 5.4.29

are computed numerically, we write

R _ ~
mﬁX(p)—R(X(pHAX(p)) R(X(p)) 5.4.35

where AX(p)is related to, but not equal to 0X(p) . To allow for some negative
correlation in expected profile errors, AX(p) is constructed by multiplying dX(p) by a
sine wave with a full period of six temperature profile functions in the case of uncertainty
of temperature profile to be used in the humidity and ozone profile retrievals, and six
humidity profile functions in the case of water vapor uncertainty to be used in the
temperature and ozone profile retrievals. In the case of ozone profile, with only seven
functions, we simply multiply the predicted uncertainty by 0.5. We have also found that
in constructing the noise covariance terms in Equation 5.2.9 used for cloud clearing and

cloud property retrievals, it was more advantageous to instead set AX =0.5 6(X) for all

profile terms. For surface parameters we take AX = 8X, as for the liquid water profile.

5.4.11 Retrieval of Cloud Parameters

Retrieval of cloud parameters is a fundamentally different process from, and should not
be confused with, the process of cloud clearing. = Both applications use observed
radiances in the 9 AIRS FOVs within an AMSU A FOR. Cloud clearing (Section 5.2)

extrapolates AIRS observations in the 9 potentially cloudy FOVs to obtain the cloud-
cleared radiances, ﬁi, which represent what the observations would have been if

everything else were the same, but no clouds were present. These cloud-cleared
radiances are then used to determine the surface and atmospheric properties within the
AMSU FOR. There is no need to know anything about the properties of the clouds in the
FOR to do this, nor is there any need to compute expected radiances in the cloudy portion

of the scene.

In order to determine cloud parameters from the observed AIRS radiances, one does
essentially the reverse procedure. Surface and atmospheric conditions are first

determined consistent with the cloud cleared radiances, and then cloud parameters are
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obtained such that radiances computed using the surface, atmospheric, and cloud
parameters best match the observed radiances in the different fields of view for an
ensemble of channels. This process involves the computation of expected radiances for

cloudy scenes, which was not required for cloud clearing.

Retrieved cloud parameters are important geophysical parameters in their own right and
are useful for process and climate studies. They are also used to compute OLR, which
has been used extensively in the study of climate process. In addition, the retrieved cloud

top pressure is used in the procedure to determine whether a channel “sees” or “does not
see” clouds, which in turn affects the derived clear column radiance lii for that channel

as well as its channel noise amplification factor (see Section 5.2). For this reason, cloud
parameter retrievals are performed each time clear column radiances are determined

(steps 2, 5,7, and 13 in the processing systems).

5.4.11.1 Computation of Radiances in the Presence of Clouds

th
The observed radiance for the i channel, R;, in a scene with j cloud types, can be

expressed by

Ri=(-X0jR;crr +Z R cLD,j 5.4.36
j j

where o; is the fraction of the scene covered by cloud type j, Rjcpr is the clear sky

radiance for channel i (i.e., the radiance emerging from the clear portion of the scene),
th
and Rjcrp,j isthei channel radiance emerging from the cloudy portion of the scene

covered by cloud type j (Chahine, 1982).

The computation of R;cpp ;j for a given scene is complex as a result of to the detailed

spectral absorption and reflection properties of clouds, cloud morphology within the
field-of-view, and geometric shadowing factors. Assuming plane parallel cloud

formations, R; ¢ p,j can be computed according to
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0 dt;
Ri cip,j = i Bi(Te )T (Pe, ) + | B; [T(p)][ d€nlp ]dﬁnp +
Pe;

J

Tic.

0 dt ,
R; cLr — | BiT(p)——d/p |+pjic HiTi (p.. ) cos B
i d/np j j

Pe;

5.4.37

where T;. and g, are respectively the transmissivity and emissivity of cloud type j at

€]

channel frequency v; and cloud top temperature T, ; p;.. is the cloud bi-directional
J J

reflectance of solar radiation incoming at solar zenith angle 6, and outgoing in the

direction of the satellite; T} (ch) is the two path atmospheric transmittance from the top

of the atmosphere to the cloud top pressure p..; and H; is the solar irradiance. In
J

Equation (5.4.37), the first term represents radiation emitted by the cloud that is
transmitted by the atmosphere to the satellite; the second term represents the portion of
the radiation absorbed and emitted by the atmosphere above the cloud; the third term
represents the additional contribution to the radiance of upwelling radiation from below
the cloud that passes through the cloud, and the fourth term represents solar radiation
reflected by the cloud in the direction of the satellite. Equation 5.4.37 neglects a small
term due to downwelling thermal radiation reflected off the cloud in the direction of the

satellite.

When retrieving cloud properties, the channels used are limited (see Table 5.4.1) to those
at frequencies less than 1250 c¢cm™, for which the last term in Equation 5.4.37 is not
significant. The cloud property retrieval step uses the 38 AIRS channels which are

indicated in Table 5.4.2 in the column marked HGT.

If there is only one cloud type in the scene, then the radiance emanating from that cloud

for the channels used in the cloud parameter retrieval step can be expressed as
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Ri cLp,1 = Tig, Ri,cLr +&ic, Bi(Te )Ti(pe, ) +(1-Ti,) | B; [T(p)]( 1 Enlp jdﬁnp-
Pg

5.4.38

Making the approximation that Tic, = 1- €ic, ) , then Equations 5.4.36 and 5.4.38

combine to give

R; = (1-0ugie, JRicrr +(o€i, Ricrp (pe, ) 5.4.39

where RECLD (pcl) is the radiance computed for a black cloud (T, =0, g, =1) with

cloud top pressure p. - It is apparent that the term 0o;€;. , appears only as a product in

Equation 5.4.39. Therefore o and €;. cannot determined independently, but only as a

product, which can be thought of as a radiatively effective cloud fraction that may be a

function of frequency. To the extent that €;. is a function of frequency, the frequency

dependent term oi€j can be expressed as (aSCV)lFl(V) where (Ocecv)l is a

representative value of the effective cloud fraction oj€;. , ata given frequency v, and

€
F|(v) expresses the frequency dependence of —%- .
Ecv

If there were two cloud types, and Tic, = (l—sic2 ), then the observed radiances

can be expressed as

R; = (1 (o ) — (0 5) )Ry cr g + (08 R} (pc1 )+((X€i,2)RiE3 (Pcz) 5.4.40

where (o) and (0€;,) are the radiatively effective cloud fractions for the clouds at
P, and p¢, . For the higher cloud at p. , (0ij )= 0 €, as before. On the other hand,

for the lower cloud, the effective cloud fraction (o€ 5) is given by
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(0 2) =i, [0‘2 + (1 ~ &g, )0‘10012} 5.4.41

where o, is the fraction of the area covered by cloud type 1 which is undercovered by
cloud type 2. To the extent that (1—{-:ic1 ) is frequency dependent and oy, depends on

field-of-view, this situation actually contains three cloud formations, because the spectral
dependence of radiances in areas covered by clouds at both levels is different from that of
clouds at either of the two levels, in a manner that is field-of-view dependent. In
principle, this should not by itself degrade the ability to derive cloud cleared radiances,
which allows for up to four cloud formations. On the other hand, the cloud parameter
retrieval algorithm described in the next section allows for only two layers of grey

clouds. Such a situation would give effective values of cloud top pressure as well as
cloud fraction, as would the presence of three or more distinct cloud types in the FOR.

5.4.11.2 Cloud Parameter Retrieval Methodology

The cloud parameter retrieval is performed in an exactly analogous manner to that of all
other retrieval steps. Observations in each of the nine fields of view k=1,9 are used to
determine cloud parameters, assuming there are clouds with two distinct cloud top

pressures, with varying frequency independent effective cloud fractions, (o€);, and

(0€)y within the 9 fields of view k. Using this assumption, the computed channel

radiances Rj are expressed in terms of the n" iterative estimate of the relevant cloud

parameters according to

R = (1- 00k - (@021 Ri.cir +©"wRE (pe, ) +(©00)uRP (e, ) - 5442

In computing R7y , the previously retrieved values of surface skin temperature, surface

spectral emissivity, and atmospheric temperature, moisture, and ozone profiles are used

to compute R; cpr and RiB (pcj ) . The only unknowns in Equation 5.4.42 are (oce)jk g

=1,2;k=1,9), and p, . and p. 5 The observed radiances Rk in each of the 9 fields-
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of-view for each of the 38 cloud parameter retrieval channels (a total of 342 observations)
are used to solve for these 20 variables (18 cloud fractions and 2 cloud top pressures).
The noise covariance matrix N used to retrieve cloud parameters, which represents both

noise in the observations and uncertainties in the computed values of R; ¢y R , is taken to

be identical to that used in the determination of n (Equation 5.2.9) for the appropriate

subset of channels.
The 20 unknown cloud parameters are solved for in an iterative manner. We define Y
as the difference between the observed channel radiances in field of view k, Ri,k , and

that computed from the n™ estimate of the cloud parameters, Rjj . The goal is to find nth

iterative parameters so as to minimize Yiy. Yix can be expressed according to

Yﬁl( = Ri,k — Rilk = (Ri,k — Ri,CLR ) + . 21,2068311( (Ri,CLR — Rl(pgj) . 5.4.43
.]: s

This gives rise to the iterative equation

n+1 n n n o —0R; (8pCj )
Yiik —Yik= 2 |[[RicLr —Ri(p, )| Aae) i + X | (0©)jk P
j=l,2 J j=1,2 SPCJ i
— n n n n
= .Z [Sik’Aag_k}A(oce)jk+ .2 [Sik,Apc_ Ap? 5.4.44
=12 ! =12 i j

in which the terms in brackets are the appropriate Jacobians, computed empirically as are

all other Jacobians. Note that if (o) ik (for all k) and/or OR; / Spcj (for all 1) are small
for a given Pc; the Jacobian for that cloud top pressure is small and the cloud top

pressure is contained primarily in a heavily damped mode and is not changed

significantly from the initial guess.
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As stated previously, the cloud parameter retrieval step is performed four times,
occurring each time new cloud cleared radiances lii are derived. This is done primarily
because the retrieved pressure of the highest cloud is used to decide which channels “see”
clouds. In the methodology described above, only 2 cloud top pressures are derived to be
representative of clouds in the entire AMSU FOR comprised of 9 AIRS FOV’s. Because
the primary purpose of the cloud parameter retrieval step, the first three times it is
performed, is to determine cloud top pressure, the process is simplified the first three
times it is done to derive only 2 cloud top pressures and 2 effective cloud fractions. This
saves a considerably amount of processing time. The retrieval methodology is analogous

to that described in Equations 5.4.43 and 5.4.44, with the exception that R; y is replaced
by R;, (oce)?k is replaced by (&5)31, Yit is replaced by Y{", and Sj is replaced by S;,
where in each case, the bar superscript refers to the average of the appropriate value over

all 9 FOV’s k. The first three cloud parameter retrievals then use 38 observations (ﬁi) to

determine 2 cloud top pressures and two effective cloud fractions, representative of the
average effective cloud fraction over the whole FOR corresponding to each cloud top
pressure. The 9 individual cloud fractions are only derived in the last cloud parameter

retrieval step.

For our retrievals, the first guess cloud top pressures are taken as 350 mb and 850 mb (or
100 mb above the surface, whichever is less), and the first guess effective cloud fractions

taken as 1/6 for the upper cloud and 1/3 for the lower cloud. AB_,, is set equal to 5
when two pairs of cloud fractions are determined, and AB,,,, is set equal to 20 when 9

pairs of cloud fractions are determined. The solution is constrained such that

Pe, 2 100mb and p, , SPs —50mb where pg is the surface air pressure. In addition,
(0€); x +(0€)y i are constrained to be < 1.0. If the second effective cloud fraction is

either set very small in the first guess, or becomes very small in the retrieval, no useful

information about the second cloud top pressure can be determined.

In most cases, IR/MW retrieval based cloud parameters and geophysical parameters,

derived in Steps 13 and 14, are reported. In such cases, the 2 cloud top pressures and 18
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effective cloud fractions will be reported. These are used to derive 9 values of OLR and
clear sky OLR, one for each AIRS FOV, which are also reported. Under some
conditions, primarily when cloud cleared radiances cannot be generated in an accurate
enough manner to produce meaningful results (e.g., if the FOR were overcast), then
MR/strat IR based cloud parameters and geophysical parameters, derived in Steps 1 and 2
are reported. In such a case, 2 cloud top pressures and 2 effective cloud parameters are

reported, as well as one value each of OLR and clear sky OLR, valid for the whole FOR.

5.4.12 Computation of OLR and Clear Sky OLR

OLR is computed from the AIRS products in a manner analogous to that used to compute

OLR from TOVS (Mehta and Susskind, 1999a; 1999b)

F=(1-(ag); —(0&); )Fcrr +(0€); Forp (Pe, ) +(0€); Ferp (Pe, ) » 5.4.45

where in Equation 5.4.45, F represents the OLR for the entire scene, F-p g represents the
OLR emanating from the clear portion of the scene, and Fqpp(p.) represents the OLR

that would be observed if the scene were covered by a black cloud with cloud top
pressure p.. All OLR flux terms are computed as the sum of contributions from 14
spectral bands. Fcpr is computed according to

fnﬁ d

14 T
F = eB, (T + B, (t)—d/
CLR ni§1 1By, (127 (P) znjp vl )dﬁnP P 5.4.46

where ¢€; is the average surface emissivity over spectral band i. The band transmittances
Ti(p) used in Equation 5.4.46 are computed at band dependent effective zenith angles,
0;. A small term related to downwelling thermal radiation reflected off the surface and
transmitted to space is neglected in Equation 5.4.46. Fcpp(p.), the flux emanating from
the portion of the scene covered by black cloud at cloud top pressure p., is computed in

an analogous way
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9% 4inp 5.4.47
d/np

14 {np
1= np,

The band transmittances T;(p) are parameterized as a function of temperature, moisture,

and ozone profile in an identical manner to those used by Mehta and Susskind (1999a,

1999b).

In all cases, Frrr, Forp,and ae are computed using the appropriate state estimates,
IR/MW or MW/strat IR, as described previously. Fqpr is also reported as the clear sky

OLR, representative of what OLR would be if the scene were otherwise identical but
contained no clouds. This is a physically different quantity to that which would have
been observed if sampled only under completely clear conditions because of sampling

differences.

5.4.13 Differences Between At-Launch Algorithm and Version 4

The at-launch algorithm, described in Susskind, et al., (2003), was developed and
optimized based on simulated data. The differences between Version 4, used with real
AIRS/AMSU/HSB data, and the at-launch version of the retrieval algorithm are relatively
small. The post-launch channel frequencies were somewhat different from those pre-
launch, as expected, as were the channel spectral response functions. Consequently, new
Radiative Transfer Algorithm (RTA) coefficients were generated (Strow, et al., 2005) to
be consistent with the post-launch instrumental conditions. Minor modifications were
therefore made to the set of channels used in the retrieval algorithm shown in Table 5.4.2.
The most significant of these modifications resulted from the finding that more channels
in the 4.3-um region were affected by non-local thermodynamic equilibrium (non-LTE)
than previously thought. Radiances in these channels are perturbed during the day, and
these channels are currently not used in the retrieval algorithm day or night. It was also
found that observed channel brightness temperatures for AIRS, as well as AMSU, were
biased from those computed using the RTA with the best estimate of the truth. These
biases, referred to as “tuning coefficients,” are subtracted from all terms in the retrieval

algorithm involving observed minus computed brightness temperatures. New regression
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coefficients were also generated (see Section 5.3) based on clear column radiances for an
ensemble of accepted retrievals, using the 3-hour ECMWF forecast at “truth.” A few
AIRS channels exhibit a radiometric instability characteristic, known as “popping”, and
these channels are excluded from the list of channels used either in the regression or the
physical retrieval steps. It was also found that many of the channels used in the at-launch
physical retrieval algorithm were not needed in practice, and are no longer used in the
physical retrieval steps so as to make the physical retrieval computationally more
efficient with no loss of accuracy. A new concept has also been introduced in terms of
quality control, in which different geophysical parameters retrieved from AIRS/AMSU
data have different criteria for acceptance. The basic steps in the retrieval algorithm,
given in Section 5.4.1, are essentially identical to those shown in Susskind, et al., (2003).
The only change is a new step to determine the CO profile done after the retrieval of the
final surface skin temperature and temperature profile. This step is done in an analogous
manner to what is done in the H,O and O, profile retrieval steps. No change was made to
the cloud clearing algorithm other than the AIRS channels used in the cloud clearing step.
The major change from the at-launch algorithm is with regard to the new quality flag

concept.
5.4.13.1 Minor Differences from the At-Launch Version

There are only minor differences in the details of the different retrieval steps, compared
to what was done in the pre-launch algorithm described in Susskind, et al., 2003. These

minor differences are detailed in the following sections.
5.4.13.1.1 Temperature Profile Retrieval Step

The number of AIRS channels used in the physical retrieval of temperature profile has
been decreased from 147 to 65, the number of functions remains at 23, and AB,,,, has
been reduced from 0.75 to 0.5 (increasing damping). Information about the mid-lower

troposphere comes primarily from the 9 temperature sounding channels between 2387

cm! and 2395 cm™.
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5.4.13.1.2 Water Vapor Profile Retrieval Step

The number of AIRS channels used has been decreased from 66 to 42, the number of

functions remains at 10, and AB,,, remains at 1.0.

5.4.13.1.3 Ozone Profile Retrieval Step

The number of AIRS channels has been increased from 23 to 26, the number of functions

remains at 7, and AB,,,, remains at 0.75.

5.4.13.1.4 Surface Parameter Retrieval Step

Some significant modification has been made to the surface parameter retrieval step. The
surface parameter retrieval step determines surface skin temperature, IR surface spectral

emissivity €;, and IR effective surface spectral bi-directional reflectance p;. The initial

guess for €; and p; is generated by the regression step. Over ocean, we replace this by

the Masuda model refined by Wu and Smith (1997) as the initial guess for 8? , and set
p? = (1—8? )n. In addition to determining T, Susskind, et al., (2003) determined

coefficients of 8 perturbation functions for €; and 3 perturbation functions for p;. 53

window channels were used, and AB,,,, was set at 0.2.

Detailed analysis of sea surface temperature retrieval accuracy showed that use of 8
perturbation functions over ocean, even with considerable damping resulting from

AB.x = 0.2, was causing spurious oscillations in the retrieved spectral emissivity, and

resultant biases in retrieved sea surface temperature. Over ocean, the Masuda spectral
emissivity model generates a reasonable shape of the spectral surface emissivity.

Therefore, the number of € perturbation functions was reduced from 8 to 2. One
function adds a spectrally constant value to 8? at frequencies lower than 1614 cm™, and
the second adds a different spectrally constant value to 8? at frequencies higher than
2181 cm™ (there are no AIRS channels between 1614 and 2181 cm™). Also, only a single

spectrally constant perturbation function, which is added to p0 ,isused. AB ., has been

increased (less damping) to 0.5. This resulted in a significant improvement in the

accuracy of the retrieved sea surface skin temperature.
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For simplicity, the same procedure is used over land, sea ice and coasts (henceforth
referred to as “land”). Unlike ocean cases, the initial guess for the shape of the surface
spectral emissivity, coming from the regression step, is in general very poor, especially
over arid land. The Version 4 surface emissivity algorithm, optimized for ocean cases,
needs more development for land cases. Consequently, the surface spectral emissivity
product over land should not be used by researchers at this time. We are conducting
research to produce a better land surface spectral emissivity in the next version of the

AIRS retrieval algorithm.
5.4.13.1.5 Cloud Clearing

The cloud-clearing methodology, developed and optimized using simulated cloudy
radiances, is essentially unchanged when used with real data. Less channels are used
than in the at-launch algorithm because it was found that their elimination served only to
speed up the cloud-clearing step with no appreciable loss in accuracy. In particular,
channels in the spectral region 2387 — 2392 ¢cm™ are no longer included in the cloud

clearing step.
5.4.13.1.6 Cloud Parameter Retrievals

The most significant change to any step in the at-launch retrieval system is in the cloud
parameter retrieval. The at-launch cloud parameter retrieval algorithm was optimized
based on simulated gray clouds at two levels, with varying cloud fractions in the nine
AIRS spots. Real clouds are of course more complex. Since cloud clearing anticipates
cloud formations and cloud parameter retrieval anticipates cloud layers, the impact is
entirely different. Susskind, et al., (2003) accounts for up to four independent cloud
formations within a 3x3 array of AIRS FOVs in deriving the clear column radiances.
The identical methodology is used in Version 4, and in most cases, excellent results are
obtained. Cases in which the cloud-clearing methodology breaks down are usually

identified by the quality control algorithm described in the next section.

For cloud parameter retrieval, however, we found that in many cases, the two-layer
assumption does not represent the clouds very well and the rate of convergence to the

best radiatively equivalent two-layer solution is slower than found in simulation. To
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accommodate this realization, the convergence test, which in simulation specified that
each iteration must reduce residuals by at least 25% before the retrieval is terminated,
was relaxed to a test which specified a minimum reduction of 5%, and this convergence
test was applied only after the third iteration. The damping criterion was also relaxed,
increasing AB,,,, from a pre-launch value of 7.0 to 20.0, so that the radiances would be
believed much more, relative to our arbitrary cloud parameter first guess state with cloud
top pressures of 350 and 850 mb. It was discovered that the algorithm is more able to
move clouds up in the atmosphere than to move them down. For this reason, the first
guess, which was 350 mb and 650 mb in Susskind, et al., (2003), was altered to 350 and
850 mb, subject to being a minimum of 100 mb above the surface. However, there were
no adjustments made to the fundamental cloud parameter retrieval methodology

described in Susskind, ef al., (2003) and in Section 5.4.8.6.
5.4.13.2 Generation of Tuning Coefficients

Steps in the physical retrieval and cloud clearing algorithms involve the difference

between observed (or cloud cleared) radiances R;, and those computed from some

geophysical state, Ricomp, using the radiative transfer algorithm (RTA) described in

Strow, et al., (2005). If one had a perfectly calibrated instrument and perfect

parameterization of the radiative transfer physics, then, given the true surface and

atmospheric state, expected radiances, Ritrue , could be calculated that match the observed

radiances R; up to instrumental noise. Systematic errors in either the calibration of the
observed radiances R; , (channel i, zenith angle /), or in the computation of radiances
Rf?mp , would introduce biases in (Ri = Rf(}mp) and propagate errors into the solution.
We attempt to identify these biases and remove their effect by subtracting them from all

terms of the form (Ri —Rfomp ) whenever they occur in the retrieval and cloud clearing

processes, as well as in the cloud parameter retrieval process. This subtraction is done in
the brightness temperature domain for both AIRS and AMSU radiances, in a manner
analogous to that described in Susskind and Pfaendtner (1989) and used by Susskind, et
al., (1997) in the analysis of HIRS2 and MSU radiances:
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’

((:)i,f —G)i(émp) = (@i,e —Gicfgmp)—S@L,é 5.4.48

/7

where 0. ,—ewmp is the tuned value, ©; is the brightness temperature
il il i g p

corresponding to R;, and 8©; , is the tuning correction.

All retrieval steps involve lii—Ricomp. For AIRS channels, the tuned value of

(lii’ 0= Ricfémp), denoted by (ﬁl = Ricfémp) , 18 computed according to

(lii, )= Ri?mp)' = ((:)i,f - ®i?mp)’(j_$] ’ 449

and is used in place of (IA{l i —Rf‘émp) in all retrieval steps. An analogous procedure is

used to adjust observed minus computed radiances in the cloud clearing and cloud

parameter retrieval steps.
5.4.13.2.1 Generation of AIRS Tuning Coefficients

In order to generate AIRS channel tuning coefficients, cases were selected thought to be
unaffected by clouds so as not to have to account for cloud effects on the observed
radiances. The 3-hour ECMWF forecast, collocated to the satellite observations, is used
as truth, and observations were limited to nighttime non-frozen ocean (henceforth
referred to as “ocean”) so as to avoid effects of solar radiation reflected by the surface as
well as effects of non-LTE. Ocean cases were selected because we have the best estimate

of both sea-surface temperature and surface emissivity over oceans, compared to land, to

be used in the computation of R}rue. Over ocean, the IR surface spectral emissivity is
parameterized according to Masuda, et al., (1988), as modified by Wu and Smith (1997),
assuming a surface wind speed of 5 m/sec. For the computation of IR biases, cases were
selected for which the retrieval was accepted and called essentially clear according to the
methodology described in Susskind, et al., (2003). In addition, a cirrus screening test

was added, eliminating all scenes in which the absolute difference of the difference of
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observed minus computed brightness temperatures for 790 ¢cm™ and for 945 ¢cm™ was

greater than 0.3K.

Figure 5.4.3a shows the nighttime biases of observed minus computed brightness
temperatures averaged over all zenith angles ¢ for the AIRS channels for the 5138 clear
ocean night cases found on 6 September 2002. These biases had very little scene or
zenith angle dependence. Therefore, for AIRS channels, the tuning coefficient for

channel 1 is taken as an angle independent constant

30;, = Aj 5.4.50

Computed biases in channels affected significantly by radiation emitted from the surface

are less meaningful because of effects of uncertainty in the “true” surface skin

temperature and surface emissivity on R}rue. Likewise, biases for channels significantly
effected by ozone absorption are suspect because of limited accuracy of ozone profiles in
the ECMWEF forecast, and to a lesser extent, this holds for channels significantly affected
by water vapor absorption as well. In general, observed brightness temperatures are
somewhat warmer (generally 0.5K-1.5K) than those computed using the RTA in the CO,

absorption region 650 cm™ — 750 cm™.

Figure 5.4.3b shows that daytime biases are very similar to nighttime biases, except for
the region between 2240 ¢cm™ and 2386 cm’, and greater than 2400 cm™. Daytime
radiances in the first spectral range are affected to varying degrees by non-LTE. Figure
5.4.3b indicates by stars the channels currently used for temperature sounding in the
spectral region 2200 cm” — 2420 cm’, which is a smaller set than in the at-launch
version. Channels sensitive to non-LTE effects are not used in the physical retrieval step
at this time because non-LTE effects are not currently accounted for in the RTA. The
negative differences at frequencies greater than 2400 cm™ are indicative of limitations in
the treatment of the surface bi-directional reflectance, p, when generating the “truth”.
This is of no consequence because p is solved for as part of the retrieval process. Tuning

coefficients are applied only for channels in the range 650 cm” — 756 ¢cm” (CO,
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absorption), and 2180 cm™ — 2422 cm™ (CO, N,O and CO, absorption). Those spectral
regions in which the tuning coefficients are applied are indicated by the horizontal bars in

Figure 5.4.3.
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Figure 5.4.3. Brightness Temperature BIAS Observed minus Computed (K)

5.4.13.2.2 Generation of AMSU Tuning Coefficients

The procedure used to generate AMSU tuning coefficients is analogous to that used to
generate AIRS tuning coefficients. The coefficients used were generated for ocean cases
on 6 September 2002. These cases were screened to eliminate contamination from
precipitating clouds. Unlike the biases found for AIRS channels, AMSU channels had a
pronounced, and systematic, zenith angle (beam position) dependence. This arises from
effects of antenna side-lobes, which were not adequately accounted for in the calibration
of the AMSU observations. Figure 5.4.4 shows the beam position biases observed on 6
September 2002, for the AMSU-A channels. The larger the AMSU-A channel number,
the higher in the atmosphere the channel is sensitive to, and less of the surface is seen.
Also shown are analogous biases determined using data for 25 January 2003. The beam
position biases found on 6 September 2002 and 25 January 2003 are very similar to each

other, including coarse and fine angle dependent features.
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The standard deviations of the difference between observed and computed brightness
temperatures for these channels are shown in Figure 5.4.5. The standard deviations are
affected by channel noise, errors in the “truth”, and scene dependence of the necessary
tuning. For the most part, the beam dependent standard deviations are on the order of the
instrumental noise. This indicates that there is only small scene dependence of the
required tuning. Standard deviations increase with increasing sensitivity of the channel
radiance to surface effects, because of errors in the “truth”. Note, for example, the
standard deviations in channels 1 and 2, and the central angles of channels 3 and 4, which
see less and less of the surface respectively, especially as zenith angles increase from
nadir. Figure 5.4.5 also confirms the finding that AMSU channel 7 is very noisy, and for

this reason, radiances in AMSU-A channel 7 are not used in the retrieval procedure.

Based on these findings, AMSU channels are tuned according to

80, =Ajy 5.4.51
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with Ai’g determined using the September 6, 2002 data, and shown by the fine black

curves in Figure 5.4.3a. All AMSU channels are tuned (i.e., the tuning correction is
applied) except for channel 15 (89 GHz), because radiances in channel 15 over ocean are
highly sensitive to absorption by water vapor, which is not adequately characterized by
the ECMWEF forecast. For the same reason, HSB channels are not tuned. AMSU-A
channels 1 and 2 are tuned, even though they are highly sensitive to surface
effects,because of the obvious large angle dependence to the biases. As with AIRS

tuning coefficients, these adjustments are used globally and for all time periods.
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5.4.13.3 Modeling of Computational Noise

The physical retrieval algorithm (Susskind, et al., 2003) involves the matrix (S’N_IS)

where S;; is the Jacobian, (the derivative of the computed radiance of channel i with

regard to variable j), and Njy is the channel noise covariance matrix. An analogous

equation, involving the matrix N, is used in the cloud clearing process.

In Susskind, et al., (2003), N is written as a sum of two components

N=N+N 5.4.52

where N represents errors in R due to instrumental noise, including effects of noise

amplification and errors resulting from the cloud clearing process, and N represents

uncertainty in Ricomp resulting in errors in variables assumed to be known. An
additional term, reflecting errors in (lii—Ricomp) resulting from a combination of

calibration errors and errors in the RTA, was not included in Susskind, et al., (2003).

Such a term is included in the channel noise covariance matrix given in Equation 5.4.25,

and called Mghys . In the following discussion, Mghys will be referred to as N;.

In Section 5.4.11.2, the procedure to identify biases in (IA{l —Ricomp) was given, as well

as the methodology to account for the effects of biases in the retrieval process. There are

still residual (possibly case dependent) errors in (IA{l —Ricomp). These uncertainties, Nj;,

need to be modeled and included in the channel noise covariance matrix

N=N+N+N 5.4.53

Figure 5.4.5b showed standard deviations of (éi,ﬁ —@ir,}le) for the AMSU-A channels.

The values in Figure 5.4.5b combine the effects of N (channel noise), N (effects of

errors in the truth) and N (residual errors). It is difficult to separate N from N and
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(especially) from N. For some channels, N (errors in the “truth”) could be the dominant

term.

In an attempt to estimate N, we look at the standard deviation of ((:)l - @iSOI) , where

R is computed from the retrieved state and ©°' is the brightness temperature

corresponding to RiSOI . For AIRS channels, the same set of clear ocean observations on 6
September 2002 that were used to generate the tuning coefficients were used to estimate
N;;. Clear cases were chosen so as to avoid noise amplification and other errors arising

from the cloud-clearing process. If Nj; were set equal to the standard deviation of

(61 - @iSOI) , N;; could be overestimated on the one hand, because of inclusion of noise

effects N ;i in the residual, and underestimated on the other hand, if an incorrect solution

could be found that matched, case by case, the noise in f{i as well as the residual physics
errors. The latter will not happen in general because radiances in many channels
influence the solution. Nevertheless, if a geophysical parameter (say, 1-mb temperature)

is determined primarily by the radiance in a single channel 1, then a case by case solution

would be found such that (lil - Rf‘)l) would be very small. This situation occurs in those

15-um channels primarily sensitive to the upper stratosphere, at frequencies lower than

670 cm™. Therefore, (somewhat arbitrarily), Nj; was set equal to twice the standard

deviation of ((:)l - @iSOI) for AIRS channels with frequencies less than or equal to

670 cm™. At all higher frequencies, (somewhat arbitrarily) Nj; was set equal to one half
the standard deviation of the residual of ((:)l —@iSOI) because of possible inclusion of

channel noise effects. A number of options were tested, and the above specification of

N;; resulted in the best retrieval performance. Nj; is defined in this manner for all

channels, but is only relevant for those channels used in the physical retrieval process.

Off diagonal terms Nij were set equal to zero for all channels. An analogous procedure

was used to generate Nj; for all microwave channels, in which case N;; was set equal to
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the RMS residual of ((:)l - @fd). No appreciable zenith angle dependence was found in

the standard deviation of ((:)l - @iSOI) for either AIRS or AMSU channels. Figure 5.4.4

shows Nj; determined in this fashion for all AIRS channels. The residuals were
evaluated and shown in the brightness temperature sense. The values of Nj; are typically
on the order of 0.3K in brightness temperature units for AIRS channels at frequencies
greater than 668 cm™. When used in Equations 5.2.9 and 5.4.25, Nj;; is converted into the

radiance units. Nj; for AMSU channels was also on the order of 0.3K.

5.4.13.4 New Quality Flags

The major change to the at-launch algorithm is a new concept with regard to quality
flags. Susskind, et al., (2003) discussed a number of threshold tests used to determine
whether the combined IR/MW retrieval is of good quality. These tests utilize only the
AIRS/AMSU radiance data. No external data, such as GCM forecast fields or MODIS
observations are used. If the tests were all passed, the combined IR/MW retrieval state,
and associated clear column radiances, were reported, as well as cloud and OLR values
consistent with the AIRS radiance observations and the IR/MW retrieval state. If any of
the tests were not passed, IR/MW retrieval state was “rejected” and the MW/strat IR
retrieval state was reported, as well as associated values of cloud parameters and OLR
constant with that state. Rejection usually implied problems with regard to treating
effects of clouds in the field of view, and rejected cases produced generally poorer results

in the mid-lower troposphere and at the surface.
5.4.13.4.1 At-Launch Rejection Criteria

A number of tests are made in Susskind, et al., (2003) to determine whether the entire
retrieval is rejected or accepted. The major cause of rejection is difficulty in dealing with
the effects of clouds on the AIRS radiances. These tests are described in the following

sections, with threshold values given in Table 5.4.4.
5.4.13.4.1.1 Assessment of the Cloud-Clearing Fit
Equations 5.2.16, 5.2.17, and 5.2.7 give the solution for the vectors { and m, and the

resultant clear column radiances lii. If a successful solution is produced, the ensemble
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lii for the cloud-clearing channels should match the incoming estimates of cloud-cleared

radiances Rjcpr to a reasonable degree. A poor match is indicative of either a

particularly poor first guess or problems in handling the effects of clouds on the
radiances. The weighted residuals of the clear-column radiances are computed for the

channels used in the computation of M, and corrected to brightness temperature units

according to

1/2

5 -1
by (Ri —Rjcr )2 Ni;
1

(3B V
Nl i
% 1 (aT Li

The solution is rejected if AF computed when determining ﬁil is greater than 1.75K.

AF = 5.4.53

5.4.13.4.1.2 Difficult Cloud Cases

Cases with extensive cloud cover, resulting in low contrast, are particularly difficult to
analyze. The solution is rejected in Susskind, ef al., (2003) if the sum of the final
retrieved cloud fractions o€ for all cloud layers is greater than 0.8, the noise
amplification factor in the final cloud clearing step, A(4), is greater than 3, or the
effective noise amplification factor Agftf) is greater than 8. The retrieval is also rejected
if the total cloud liquid water determined in the microwave product retrieval step, Wy,

is greater than 0.03 gm/cm’.

5.4.13.4.1.3 Large Residuals in Second-Pass Retrievals

The general iterative solution is terminated when either the residual R" (Equation

5.4.23) is less than 10% of the RSS of the predicted noise for each mode Rn61~3,5,

Equation 5.4.17 or R" is more than 75% of R"!. Slow convergence indicates a poor

solution. The solution is rejected if the converged value of R is greater than 1.0 times the

root-sum-square of SBK in either the surface parameter retrieval (Rsurf) or the
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temperature profile retrieval (Rtemp) in the second pass. Poor convergence generally
indicates problems with the clear column radiances ﬁi4 .

5.4.13.4.1.4 Inconsistency of Test “Microwave-Only” Retrievals and Combined
Infrared/Microwave Retrievals

Under some conditions, the cloud-cleared radiance ﬁi4 is poor but all convergence tests

are passed. Nevertheless, the test microwave-only retrieval produces low level
temperatures which differ significantly from those of the second pass retrieval. This
generally indicates poor cloud-cleared radiances. The solution is rejected if the root-
mean-square differences between the temperatures in the lowest 3 km of the test

microwave-only retrieval (AT(p)) differs from that of the second pass retrieval by more

than 1.25K.
5.4.13.4.2 Geophysical Parameter-Dependent Quality Flags

The basic approach used in Version 4.0 with regard to quality flags is identical to that of
Susskind, et al., (2003) with one major exception: different quality flags are used for
different geophysical parameters. Problems dealing with clouds in the field of regard
(3x3 array of AIRS fields of view) may produce a poor temperature profile in the lower
troposphere, but should not degrade accuracy of stratospheric temperature or upper
tropospheric water vapor. For this reason, a less strict threshold test is applied to accept
stratospheric temperatures than lower tropospheric temperatures. Cases are classified 0-6
according to their ability to pass 6 increasingly more stringent threshold tests. The higher
the number, the tighter the test which is passed. Class 6 passes the tight sea surface
temperature test, Class 5 passes the standard sea surface temperature test, Class 4 passes
the lower tropospheric temperature test, Class 3 passes the mid-tropospheric temperature
test, Class 2 passes the constituent profile test, Class 1 passes the stratospheric
temperature test, and Class O fails the stratospheric temperature test. The final IR/MW
retrieval state and associated clear column radiances and cloud and OLR fields are
provided for all Classes except for 0, in which case the MW/strat IR state and associated

cloud and OLR parameters are reported.
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The threshold tests used to assign quality flags are for the most part identical to those in
Susskind, et al., (2003), with the addition of 4 new tests. As before, all tests involve only
AIRS and AMSU radiances. Susskind, et al., (2003) threshold values for all of these
tests are shown in the first column of Table 5.4.4. A test is passed if the value of the
parameter used in the test is less than or equal to the threshold value. All tests must be

passed for the final IR/MW retrieval state to be accepted.

Version 4 threshold values for each of the 6 Classes described above for all of these tests
are included in Table 5.4.4. Tests for some classes use separate threshold values for
ocean cases and land cases. When the thresholds are different, the land threshold is

shown in parenthesis, and is always larger or the test is non-applicable. Non-applicable

tests are indicated by X. Four new tests have also been added: Agf)f, which is analogous

to Agg but is applied after the initial cloud clearing; A®5, which is the absolute value of

the (tuned) difference between the observed brightness temperature of AMSU channel 5
and that computed from the final retrieval state; A g;,, Which is the absolute value of the
difference between the regression surface skin temperature and the final surface skin
temperature; and RS (Goldberg, et al., 2003), which represents how well the observed
AIRS radiances can be represented by use of 200 principle components. Threshold
values for these tests for all classes are included in Table 5.4.4. Bold values indicate the
introduction of a new test or tightening of a previous threshold. These thresholds were
obtained empirically, varying one threshold at a time, in an attempt to achieve the best
accuracy while maintaining reasonable spatial coverage of accepted cases. Examples of
the tradeoff between coverage and accuracy are given in the following sections. In each
case, all other thresholds are held fixed, with only the value of a single threshold being

varied.

180



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

Table 5.4.4. Quality Flag Test Thresholds

Susskind et al. Version 4
(2003)
1) 2) 3) 4) 5) 6)
T(p) good q(p) good T(p) good T(p) good SST good SST good
Test Acceptable Profile 200mb&up O;(p) good 3km&up above surface Loose Tight
oe 80% 90% 90% 90% 90% 90% 90%
Wiiq .03 X .03 .03 .03 .01 .01
AT (p) 1.25 X X 2.0 2.0 2.0 2.0
AW 3 X 8.0 2.0 2.0 2.0 2.0
A 8 X X X 15 (X) 8 8
AF 1.75 X 8.0 2.0 (6.0) 1.5 (1.5) 1.5 1.5
Riemp 1.0 X X 0.75 0.75 0.75 0.75
Rt 1.0 X X 0.75 (X) 0.75 (X) 0.75 0.75
AV X 200 200 30 (X) 30 (30) 9 5
AOs5 X X X 2.0 2.0 2.0 2.0
Askin X X X X 1.5 1.5 1.5
RS X 10 10 4 4 1.2 1.2
oe is the effective cloud fraction
Wiig is cloud liquid water
AT (p) represents the difference of retrieved lower tropospheric temperatures between MW only and
IR/MW  retrievals
AW represents the final channel noise amplification factor
Aeff(4) represents the final effective channel noise amplification factor
AF represents the quality of the initial cloud clearing fit
Riemp represents the degree to which the final temperature profile retrieval has converged
Rgurt represents the degree to which the final surface parameter retrieval has converged
Aeff(l) represents the initial effective channel noise amplification factor
AOg4 represents the agreement between the observed AMSU channel 5 brightness temperature and
that computed from the final solution
A gkin represents the difference between the final surface skin temperature and the regression valve
RS represents the principle component reconstruction score of the observed AIRS radiances
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5.4.13.4.2.1 Stratospheric Temperature Test

This is the most fundamental test and is used to indicate, first and foremost, whether the
final combined IR/MW retrieval, including associated clear column radiances and cloud
and OLR parameters should be used, or whether the combined IR/MW retrieval should
be “rejected” in all its aspects. The IR/MW retrieval is “rejected” if it is thought to be
poorer than the MW/strat IR retrieval, which uses no AIRS channels affected by clouds.
The combined IR/MW retrieval cannot always be used because cloud clearing cannot be
done under overcast conditions. If the final retrieval were used under such conditions,
not only would very poor (too cold) tropospheric and surface skin conditions be derived,
but using those conditions to determine cloud fields would result in little or no fractional
cloud cover being derived, because AIRS channel radiances computed using the retrieved
state would match observed radiances, without the need to add clouds to the scene.
Products derived from the combined final IR/MW retrieval are rejected if the retrieved

effective cloud fraction is 90% or more. Two tests are added to make sure the clear
column radiances are acceptable: Agf)f must be less than 200 and RS must be less than
10. Failure of the first test indicates that the initial cloud clearing step had significant
problems (note the Agg threshold was set equal to 8 in Susskind, et al., (2003)) and of

the second test indicates a significant problem with the observed AIRS radiances (RS
equal to 1 is the expected value for nominal radiance performance). Retrieved
temperatures 200 mb and above (lower pressures) are flagged as good if this test is

passed.
5.4.13.4.2.2 Constituent Profile Test

This test is designed to insure that constituent profiles (O;, CO, H,0) are of sufficient
accuracy for research use. Constituent profiles are considerably more variable, and less
well predicted by models, than are temperature profiles. In general, the more spatial
coverage one has, the better, provided the accuracy is adequate. This is especially true
with regard to studying interannual variability of monthly mean differences. This applies
particularly to water vapor, for which it is desirable to avoid a clear (dry) bias in the
selection of the cases to be included in generation of the monthly mean fields. Most CO

and H,O exists in the troposphere, however, and ability to treat cloud effects on the
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radiances accurately is more important than with regard to stratospheric temperatures.
Therefore three tests used in Susskind, et al., (2003), designed to indicate potential cloud
clearing problems, are included in the constituent profile test as shown in Table 5.4.4.

The liquid water test threshold is the same as is Susskind, er al., (2003), and the

thresholds for A and AF are considerably less stringent.
5.4.13.4.2.3 Mid-Tropospheric Temperature Test

Retrieved mid-tropospheric temperatures are affected more by errors in the treatment of
clouds in the field of view than are stratospheric temperatures. Therefore, tighter quality
control is employed in the mid-tropospheric temperature test. Susskind and Atlas (2004)
showed that assimilation of AIRS temperature profiles retrieved from AIRS data, using
an earlier version of the AIRS retrieval system (which employed a single rejection
threshold for all geophysical parameters), significantly improved forecast skill.
Moreover, the improvement was much larger if all accepted cases were used as opposed
to use of the slightly more accurate, but much less frequent, temperature soundings in
cases found to be clear. Therefore, from the data assimilation perspective, there is a
trade-off between accuracy and spatial coverage, as is also true with regard to the study
of interannual variability. The thresholds shown in Table 5.4.4 are designed to maximize
spatial coverage, while minimizing loss in accuracy. Four tests used in Susskind, et al.,
(2003) are now included in the mid-tropospheric temperature test. The first test, AT(p),
which contains the difference in the retrieved temperature in the lowest 3 km between the
combined IR/MW retrieval and the test MW retrieval, is looser than that in Susskind, et
al., (2003). In addition, the threshold for AF has been tightened from that of the

constituent profile test, but is still less stringent than in Susskind, et al., (2003).

Thresholds in the three additional new tests, A, Riemp, and Rgy¢ are all somewhat

tighter than in Susskind, et al., (2003). Thresholds for Agf)f and RS have also been
tightened from their values in the constituent test, but are still at moderate values. A new
test, A@5 has also been added, requiring that the observed brightness temperature for
AMSU channel 5, sensitive to lower tropospheric temperatures, should agree with that
computed from the combined IR/MW retrieval to within 2K after tuning is applied. The

threshold for AF over land is less restrictive than over ocean because AF is affected by
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uncertainty in surface emissivity, which is greater over land than over ocean. Ry, s and

Agf)f are also affected significantly by uncertainty in surface emissivity and for this
reason, these tests are not utilized over land, so as to maximize spatial coverage. Errors
in surface emissivity do not degrade retrieved mid-tropospheric temperatures appreciably.
If the mid-tropospheric temperature test is passed, the temperature profile is flagged as

good above 3 km of the surface.

Figure 5.4.6 gives examples over global ocean of RMS errors of the 477 mb — 535 mb
layer mean temperature and the percent cases classified as mid-troposphere good when

AF and Ryepyp are varied independently from their Version 4.0 ocean thresholds values

of 2.0 and 0.75 respectively. Thresholds for all other tests are set at the appropriate
values in column 3 of Table 5.4.4. The RMS error of the 477 mb — 535 mb layer mean
temperature, using Version 4.0 thresholds, is 0.888K and the percent of cases classified

as mid-troposphere good is 58.3%. If the threshold of Ry, were set at 0.4 instead of

0.75, the RMS error or this layer mean temperature would drop to 0.846K, but the
percentage of cases classified as mid-troposphere good would drop to an unacceptably
low value of 33.8%. Atan Ry, threshold of 1.0, the RMS error rises to 0.904K, with
only a small increase in percent of cases classified as good. Analogous statistics for Agf%

show a RMS error of 0.815K, with 29.1% classified as good, if the Agf% threshold were

set at 10, rather than 30, and an RMS error of 0.898K, with 62.2% accepted, if the Agf%

threshold were set at 40 rather than 30.
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Figure 5.4.6a. Riemp: Degree to Which Final Temperature Profile Retrieval has
Converged
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Figure 5.4.6b. A(elf% : Initial Effective Channel Noise Amplification Factor
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5.4.13.4.2.4 Lower-Tropospheric Temperature Test

Retrieved temperatures in the lowest 3 km of the atmosphere are most sensitive to cloud
clearing errors, as well as errors in surface emissivity. A.¢ and AF are both measures of
how well cloud clearing is being done and potential problems with surface emissivity.
The threshold for AF is now tightened considerably and is tighter than in Susskind et al.

(2003), in which it had to be relaxed as a compromise so as not to reject the entire profile
too often. Agf)f is also now used over land, and together with AF, flags many cases over
arid land (in which retrieved surface emissivity can have large errors) as bad. The test
Atskin 18 also introduced which indicates a potential problem with the retrieved surface

skin temperature.

Figure 5.4.7 is analogous to Figure 5.4.6, showing RMS errors over global ocean of the

777 mb — 878 mb layer mean temperature and percent cases classified as lower
troposphere good as a function of varying Ay, and Agftf) . If the Ay, threshold is

lowered from its Version 4.0 value of 1.5, the percent of cases classified as lower-
troposphere good drops significantly with little change in the RMS errors of the
remaining cases. On the other hand, raising the threshold increases errors significantly

with little change in percent accepted. The introduction of the threshold of 15 for Agftf)

into the lower-tropospheric temperature good test results in a small improvement of RMS
error in the 777 — 878 mb temperature over ocean, with little cost in percent of cases

accepted.
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Figure 5.4.7a. ATaskin: Difference Between the Final Surface Temperature and the
Regression Value
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Figure 5.4.7b. A(eéftf) : Final effective Channel Noise Amplification Factor

187



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

5.4.13.4.2.5 Standard and Tight Sea Surface Temperature Tests

Sea surface temperature is determined quite well by other instruments such as MODIS.
Therefore, for AIRS to produce a useful sea surface temperature product for climate
research, it must have very tight quality control. Surface skin temperature is also the
product most affected by errors in the cloud clearing process, especially with regard to
very low clouds. In the standard SST Test, thresholds for four tests have been tightened
as shown in Table 5.4.4. This test is applied only over ocean, as land temperatures are
less well measured by other instruments. The test most correlated with sea-surface
temperature accuracy was Agf)f, with lower values indicating more accurate sea-surface
temperatures. The percent of accepted sea surface temperatures drops rapidly with

decreasing acceptance thresholds however. If Agf)f is less than a second threshold,

shown for Class 6, then the Tight SST Test is passed.
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ABBREVIATIONS AND ACRONYMS

AERI

AIRS

AIRS-RTA
AMSR-E

AMSU

AMSU-A

AMSU-B
ATBD

AVHRR

C

COLR

DAAC

DB, dB

EOF

EOS

ER-2

ESDIS

FOR

FOV

Atmospheric Emitted Radiance Interferometer
Atmospheric Infrared Sounder

AIRS Radiative Transfer Algorithm
Advanced Microwave Scanning Radiometer-EOS

Advanced Microwave Sounding Unit
Advanced Microwave Sounding Unit-A (20-channel MW radiometer)

Advanced Microwave Sounding Unit-B (5-channel MW radiometer)
Algorithm Theoretical Basis Document

Advanced Very High Resolution Radiometer

degrees Centigrade

Clear Sky Outgoing Radiation

Distributed Active Archive Center

decibel

Empirical Orthogonal Functions

Earth Observing System

Earth Research-2 (NASA's civilian version of Lockheed Skunkworks U-2)
Earth Science Distributed Information System

Field of Regard

Field of View
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FTS Fourier Transform Spectrometer
FWHH Full Width Half Height

GHz Gigahertz (10° Hertz, or cycles/second)
GSFC Goddard Space Flight Center

HITRAN  High Resolution Transmission Molecular Absorption Database

HSB Humidity Sounder of Brazil

IMG Infrared Monitor for Greenhouse Gases
IR infrared

IRIS Infrared Interferometer Spectrometer
JPL Jet Propulsion Laboratory

K degrees Kelvin

kCARTA kCompressed Atmospheric Radiative Transfer Algorithm

km kilometer (10° meters)

kPa kilopascal (10° pascal, equivalent to 10 bar)

LO-L4 Level O through Level 4 (processing)

MHS Microwave Humidity Sounder

mm micrometer, micron (10° meter)

MODIS  Moderate Resolution Imaging Spectroradiometer

MPMS87  Millimeter-wave Propagation Model (Liebe and Layton, 1987)

MPM89  Millimeter-wave Propagation Model (Liebe, 1989)
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MPM92  Millimeter-wave Propagation Model (Liebe, et al, 1992)
MPMO93 Millimeter-wave Propagation Model (Liebe, et al, 1993)
MSU Microwave Sounder Unit

MW microwave

NASA  National Aeronautics and Space Administration

NCEP National Center for Environmental Prediction

NEDT  Noise Equivalent Temperature Difference

NEDT  Noise Equivalent Temperature Difference

NEMS Nimbus-E Microwave Sounder

NESDIS National Environmental Satellite Data and Information Service
NEXRAD Next Generation Radar

NOAA  National Oceanic and Atmospheric Administration

OLR Outgoing Longwave Radiation
PCs Principle Components

PCSs Principle Components Scores
PGE Product Generation Executive
QC Quality Control

QA Quality Assessment

OPTRAN Optical Path TRANsmittance

RH Relative Humidity
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RMS Root Mean Square

RTA Radiative Transfer Algorithm

SDPS Science Data Processing System

SIRS Satellite Infrared Radiation Spectrometer
SRF Spectral Response Function

SSM/T2  Special Sensor Microwave/Water Vapor Profiler

SST Surface Skin Temperature
SVD Singular Value Decomposition
THz Terahertz (10'* Hertz)

TIGR TOVS Initial Guess Retrieval
TIROS Television Infrared Observation Satellite

TLSCF  Team Leader Science Computing Facility
TPW Total Precipitable Water

TOVS  TIROS Operational Vertical Sounder

VTPR  Vertical Temperature Profile Radiometer
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APPENDICES
A. GENERATION OF LEVEL 3 PRODUCTS

Level 3 products are quality controlled space-time averages of individual geophysical
parameters derived on a Field of Regard (FOR) basis. Level 3 products are produced on
a 1° x 1° latitude-longitude spatial grid, with ascending (1:30 PM local time) and
descending (1:30 AM local time) orbits gridded separately. Level 3 products are
produced on a daily, 8 day, and monthly mean basis. No data is contained in a grid box if

no quality controlled soundings were produced.

A.1 Quality Control Used to produce Different level 3 Fields

Different geophysical parameters are included in the generation of Level 3 fields
according to the class the sounding belongs to, as described in the previous section.

Examples of daily level 3 fields for different geophysical parameters are given in Section
C.

A.1.1 Cloud Parameters, OLR, and Clear Sky OLR

Cloud parameters, OLR, and Clear sky OLR are included in the Level 3 product for all
cases in which a MW/strat IR retrieval has been produced. This includes classes 1-6 as

well as Class 0 (MW/strat IR retrieval only).

A.1.2 Atmospheric Temperature

Atmospheric temperatures 200 mb and above are included in the Level 3 product for all
soundings passing the Stratospheric Temperature Test. Atmospheric temperatures
beneath 200 mb are included in the Level 3 product for all cases passing the Mid-
tropospheric Temperature Test. As is shown in Section C.1, use of this looser test is
necessary when producing Level 3 temperatures in the lower troposphere so as to obtain

adequate spatial coverage over land.

A.1.3 Constituent Profiles — H,O, O3, and CO

Constituent profiles are included in the Level 3 product for all cases passing the

constituent profile test.
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A.1.4 Surface Skin Temperature and Spectral Emissivity

Non-frozen ocean surface parameters are included in the Level 3 product for all cases
passing the Standard Sea Surface Temperature Test. Surface parameters for other than
non-frozen ocean cases, referred to as land, are included in the Level 3 product if the
Mid-tropospheric Temperature Test is passed. As shown in Section 6, this relatively
loose test is used over land to allow for adequate spatial coverage, just as is done for
lower tropospheric temperature Level 3 products. Examples of sample monthly mean

fields and their interannual differences are given in Section C.2.
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B. Expected Improvements in the AIRS Science Team
Version 5 Physical Retrieval Algorithm

A number of improvements are being made to the AIRS Science Team algorithm that
will be implemented in Version 5.0. A major improvement has been made to the physics
of the AIRS RTA, which now accurately accounts for effects of non-LTE on AIRS
shortwave stratospheric sounding channels during the day. This allows for potential use
of all AIRS shortwave channels in the physical temperature profile retrieval step, both

day and night. As a result of other improvements in the physics of the RTA, it was also

no longer necessary to add the term Nj;, representing an empirical estimate of

ii»
uncertainty in computed radiances arising from errors in the RTA physics, to the AIRS
channel noise covariance matrix, as done in equation 5.4.33 used in Version 4.0. A new
term is included in the channel noise covariance matrix allowing for uncertainty in the
CO, concentration on computed channel radiances. In addition, the resulting AIRS
tuning coefficients based on the new RTA are now significantly smaller than those used

in Version 4.0.

Other expected improvements in Version 5.0 result from re-evaluation of the number of
steps in the overall retrieval process and the channels, functions, and damping parameters
used in all retrieval steps including the possibility of using different channel sets,
functions, and damping parameters over land and ocean. The most significant
improvement in Version 5.0 results from development of a new methodology to provide
accurate error estimates for retrieved geophysical parameters, including clear column
radiances, and a new quality control methodology based solely on the error estimates of

the retrieval geophysical parameters.
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C. Results Using Version 4

Chapter 5.0 described the Version 4 methodology used to derive level 2 and level 3
products from the AIRS/AMSU/HSB observations. One of the objectives of the
methodology is to be able to derive high quality soundings and clear column radiances
from AIRS/AMSU observations in the presence of clouds. The cloud-clearing process
does introduce noise in the derived cloud-cleared radiances (Susskind, et al., 2003).
Therefore, one would expect a degradation in retrieval accuracy with increasing cloud
cover. It is critical that this degradation should not be appreciable if the retrieved
parameters are to be useful for weather and climate research purposes. To demonstrate
this, the accuracy of global geophysical parameters derived from AIRS/AMSU
observations on 29 September 2004 was evaluated by comparison with a co-located
ECMWEF 3-hour forecast. The ECMWEF forecast has errors of its own, and this should be
borne in mind when interpreting the results of the comparisons. Instead of an assessment
of the absolute accuracy of the retrieved quantities, we concentrate on the degree of
degradation in “accuracy,” as defined by agreement with ECMWF, occurring with
increasing cloud cover. Errors in the ECMWEF “truth” may decrease the apparent
differences in accuracy between clear and cloudy cases, but only by making the clear
cases appear less accurate than they actually are, and not by making the cloudy cases
appear more accurate than they are. In all cases, the quality control methodology
described in Sections 5.4.11.4.2 (level 2) and 5.4.11.5 (level 3) is used to include (or

exclude) data for individual retrieved geophysical parameters in the figures shown.
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C.1 Results for a Single Day

Figure C.1 shows in gray the number of cases for each retrieved effective fractional cloud
cover, in 0.5 percent bins, for the whole day 29 September 2004. The effective fractional
cloud cover is given by the product of the fraction of the field of view covered by clouds
and the cloud emissivity at 11 um. The average global effective cloudiness was

determined to be 44.11 percent. There are peaks at 0 percent and 100 percent effective
cloud cover, with a very smooth distribution at intermediate effective cloud fractions.
The discontinuity at 90 percent cloud cover is an artifact arising from the switch from
clouds retrieved primarily using the IR/MW retrieved state to clouds retrieved using the
MWr/strat IR state. Also shown, in different colors, is the percent of accepted retrievals
as a function of retrieved effective cloud cover for all cases passing the Stratospheric
Temperature Test, the Constituent Test, the Mid-Tropospheric Temperature Test, and the
Lower Tropospheric Temperature Test, as well as for non-frozen ocean cases passing the
standard SST Test and the Tight SST Test. Almost all cases with retrieved effective
cloud fraction less than 90 percent pass the Stratospheric Temperature Test, with the
percent accepted falling slowly with increasing cloud cover, from close to 100 percent at
low cloud fractions to about 65 percent at close to 90 percent effective cloud cover. 79.6
percent of the global cases pass the Stratospheric Temperature Test, with an average
effective cloud fraction of 33.08 percent. 78.4 percent of the cases pass the slightly more
restrictive Constituent Test, with an average effective cloud fraction of 32.74 percent.
48.5 percent of the global cases pass the Mid-Tropospheric Temperature Test, with an
acceptance rate of about 80 percent for low effective cloud fraction, falling to about 20
percent at 80 percent effective cloud fraction, and 10 percent at 90 percent effective cloud
fraction. The previous acceptance methodology (Susskind, et al., 2003) rejected all cases
with effective cloud fraction greater than 80 percent. The mean effective cloud fraction
for all cases passing the Mid-Tropospheric Temperature Test is 23.89 percent. Only 26.3
percent of the cases pass the Lower Tropospheric Temperature Test, primarily over
ocean, with an acceptance rate near 55 percent for low cloud fractions falling to 5 percent
at 80 percent effective cloud fraction and 2 percent at 90 percent effective cloud fraction,
and with an average effective cloud fraction of 18.33 percent. The SST acceptance tests

are applied only over non-frozen ocean. The standard SST Test accepts 23.3 percent of
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the ocean cases, and with an acceptance rate of roughly 50 percent under nearly clear
conditions, with an average cloud fraction of 9.18 percent, while the Tight SST Test
accepts only 10.6 percent of the cases, with an average effective cloud fraction of 5.96
percent. The Tight SST Test allows for more cases than does the clear test (Susskind, et

al., 2003) which includes only 8.2 percent of the non-frozen cases.
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Figure C.1. Percent Accepted vs. Effective Cloud Fraction

Figure C.2a shows the retrieved effective cloud top pressure and effective cloud fraction
for ascending orbits on 29 September 2004 in 1°x1° latitude-longitude bins. The area
weighted global mean effective cloud fraction and its spatial standard deviation are
indicated in the figure. The results are presented in terms of cloud fraction in 5 groups,
0-20 percent, 20-40 percent, etc. with darker colors indicating greater cloud cover. These
groups are shown in each of 7 colors, indicative of cloud top pressure. The reds and
purples indicate the highest clouds, and the yellows and oranges the lowest clouds.
Cloud fields are retrieved for all cases in which valid AIRS/AMSU observations exist.

Gray means no data was observed.
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Figure C.2. Retrieved Effective Cloud Top Pressure and Effective Cloud Fraction

Figure C.2b shows the retrieved 200-mb temperature field (K). This demonstrates the
coverage of cases where stratospheric temperatures are accepted. Gray indicates regions
where either no valid observations existed or the stratospheric temperature retrieval was
rejected, generally in regions of cloud cover 90-100 percent. Figure C.2c shows retrieved
values of total precipitable water vapor (cm). This demonstrates the coverage of
constituent profiles. Figure C.2d shows retrieved values of 500-mb temperature,
demonstrating coverage of accepted mid-tropospheric temperatures. Gaps in the data
coverage of mid-tropospheric temperature due to extensive cloud cover are larger than for
stratospheric temperatures. Retrieved fields are quite coherent, and show no apparent
artifacts due to clouds in the field of view. Water vapor has considerably more fine scale
structure than temperature and contains some very large spatial gradients. The extent of
gaps in water vapor coverage due to areas of rejected retrievals (retrievals which fail the

Constituent Test) are considerably less than with regard to the Mid-Tropospheric
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Temperature Test, but somewhat larger than with regard to the very loose Stratospheric
Temperature Test. As shown in Figure C.2, the percent of cases accepted as a function of

increasing cloud cover for these two classes of retrievals is almost identical.
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Figure C.3. Temperature Differences, AIRS minus ECMWF

Figure C.3a shows the difference between the retrieved 700-mb temperature and the
ECMWEF 3-hour forecast field for ascending orbits on 29 September 2004, for those cases
passing the Lower Tropospheric Temperature Test, while Figure C.3b shows the same
field for all cases passing the looser Mid-Tropospheric Temperature Test. The difference
in spatial coverage is significant, particularly over land where 700-mb temperature
retrievals appear to be biased warm compared to the ECMWF forecast. Statistics
showing the area weighted global mean difference from ECMWF and the spatial standard
deviation of the difference are included in the figures. The overall accuracy is somewhat
better with the tighter Lower Tropospheric Temperature acceptance criteria, and this
difference is significant for data assimilation purposes. When statistics are shown

depicting the accuracy of lower tropospheric temperatures (Figures C.6 and C.7), only
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cases passing the Lower Tropospheric Temperature Test are included. All data shown in
Figure C.3b is included in the generation of lower tropospheric temperature monthly
mean fields however, so as to allow for global coverage, especially over arid land

regions.

Figures C.3c and C.3d shows the differences of retrieved ocean surface skin temperature
(SST) from the ECMWF SST analysis for the ascending orbits of 29 September 2004.
Figure C.3c includes only those cases passing the Tight SST Test and Figure C.3d also
includes those cases passing the standard SST Test. A considerable increase in yield is
obtained using the standard SST Test, with some degradation in accuracy of sea surface
temperatures. The biases compared to ECMWEF are negative in both cases, with a larger
negative bias found in cases passing the standard SST Test. Errors due to cloud clearing
are typically negative, resulting from under-correcting for effects of clouds in the field of
view. This would imply that the Tight SST Test is eliminating more cases where cloud-
clearing errors are resulting in poorer sea surface temperatures. Caution must be taken

however because the ECMWF “truth” may have its own biases.

Figure C.4 shows the number of combined daytime and nighttime non-frozen ocean cases
between 50°N and 50°S, on 29 September 2004, as a function of the difference of the
retrieved SST from the ECMWF analysis in bins of 0.2 K. Results are shown for cases
which passed the Tight SST Test, the standard SST Test, and the Lower Tropospheric
Temperature Test. Figure C.3c and C.3d showed the spatial distribution differences for
the daytime orbits applying each of the SST Tests. The percent of all non-frozen oceanic
cases 50°N-50°S passing each test is included in the statistics, as well as the mean
difference from ECMWEF, the standard deviation of the difference, and the percentage of
outliers, defined as cases passing the test that differ from ECMWF by more than 3K from
the mean difference. There is a small negative bias of retrieved Sea Surface
Temperatures compared to ECMWEF, that increases with increasing acceptance rate, from
—0.29K for cases within the Tight SST Test, to — 0.72K for cases passing the Lower
Tropospheric Temperature Test. The standard deviation of the cases from ECMWF also
increases slightly. On the other hand, the number of primarily cold outliers increases

significantly, from 0.62 percent to 5.90 percent. Therefore, the Lower Tropospheric
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Temperature Test by itself is not adequate for the purpose of producing accurate monthly
mean sea surface temperatures. As with all the test thresholds, experiments are being
conducted to optimize the trade-off between spatial coverage and accuracy for best use in

studying interannual monthly mean sea-surface temperature differences.
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Figure C.4. Surface Skin Temperature Difference from ECMWF

Figure C.5a shows RMS differences from the ECMWF 3-hour forecast of retrieved 1-km
layer mean tropospheric temperatures, and 3-km layer mean stratospheric temperatures,
for non-frozen ocean cases on 29 September 2004. Results shown are for all cases
passing the Stratospheric Temperature Test, the Mid-Tropospheric Temperature Test, the
Lower Tropospheric Temperature Test, the standard SST Test, the Tight SST Test.
Results for those cases passing an additional clear test, as defined by Susskind, et al.,
(2003), are also included in the figure. The number of cases and percentage of all cases

included in the statistics are indicated for each test.
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Figure C5. C.5a (left) and C.5b (right)

Accuracies of retrieved stratospheric temperature, as compared to ECMWF “truth,”
improve slightly with increasing stringency of the tests, but are not appreciably different
from one another for cases passing any of the quality tests. The large differences from
ECMWF above 15 mb are primarily a result of the lower accuracy of the ECMWF
“truth” in the upper stratosphere. Tropospheric soundings passing either of the
tropospheric quality control tests agree with the ECMWF forecast on the order of 1K.
Part of this difference is due to uncertainty in the ECMWF forecast. It is interesting to
note that soundings for the 86 percent of the cases for which the Stratospheric
Temperature Test was passed are of relatively high quality throughout the troposphere as
well, with an RMS difference from ECMWF on the order of 1.7K in the lowest 1 km of
the atmosphere. This shows that the cloud clearing methodology works well in up to 90
percent cloud cover. Nevertheless, the accuracy of all these soundings is not considered
high enough for either data assimilation or climate purposes. There is significant further
improvement in tropospheric temperature profile accuracy, compared to that for cases

passing the tropospheric temperature profile tests, using the smaller subset of cases
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passing the standard SST Test (23.3 percent of the ocean cases) but relatively little
further improvement in those cases passing the Tight SST Test (10.6 percent of the
cases), or the additional clear test (8.2 percent of the cases). For data assimilation
purposes, we recommend experiments assimilating temperature profiles passing only the
standard SST Test, on the one hand, and passing the test for the appropriate for the level
of the temperature on the other hand, to assess the trade-off between coverage and
accuracy. One might also consider assimilating lower tropospheric temperatures in cases
passing the Mid-Tropospheric Temperature Test over ocean to further increase the spatial

coverage of the data being assimilated.

Figure C.5b shows analogous results for global accepted retrievals, including cases
passing the Stratospheric Temperature Test, the Mid and Lower-Tropospheric
Temperature Tests, and the clear test (which, over land, ice, and coasts, must also pass
the Lower Troposphere Temperature Test). Error statistics in the stratosphere degrade
somewhat for cases passing the Stratospheric Temperature Test (79.6 percent of all cases)
compared to either of the Tropospheric Temperature Tests (48.5 percent and 25.3
percent). The increase in spatial coverage using the Stratospheric Temperature Test is
much more significant globally, compared to using either of the tropospheric tests, than
over non-frozen ocean. We therefore recommend using the Stratospheric Temperature
Test for stratospheric temperatures for both data assimilation and climate purposes.
Global agreement with ECMWEF is slightly poorer than over ocean. A much larger
difference in agreement with ECMWF occurs between all cases passing the Lower
Tropospheric Temperature Test and the Mid-Tropospheric Temperature Test than over
ocean, especially in the lower troposphere. For data assimilation purposes, we feel lower
tropospheric temperatures retrieved over land should not be used when the Lower
Tropospheric Temperature Test is not passed. Globally, 3.7 percent of the cases passed
the clear test, most of which were over non-frozen ocean. Retrievals in these cases are

very accurate, but the global spatial coverage is very poor.

Figures C.6a and C.6b are analogous to Figures C.5a and C.5b but show statistics only
for cases at a given pressure level passing the appropriate quality test. Statistics for cases

passing the clear test (identical to those shown in Figures C.5a and C.5b) are included for
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comparison. Also shown is the accuracy of the regression first guess temperature profiles
for all accepted retrievals and under clear conditions. The accuracy of the physical

retrieval is higher than the regression, and more so under cloudy conditions than clear

conditions. Part of this is due to the increased accuracy of ﬁi4, used to derive the final

temperature profile, compared to li} , used to derive the regression first guess.
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Figure C.6. C.6a (left) and C.6b (right)

Figure C.6b also includes analogous results determined from the global simulation of
AIRS performance shown in Susskind, et al., (2003) for all accepted cases (red) and clear
cases (pink). In simulation, the truth is known perfectly, while with real data, the 3-hour
ECMWEF forecast is taken as a proxy for truth. With real data, the degree of degradation
for tropospheric accuracy in cloudy retrievals, compared to clear cases, is of the order of
a few tenths of a degree, just as it was in simulation. Differences from “truth” are poorer
with real data than in simulation however. Two major causes of this degradation are: 1)
perfect physics and perfect characterization of the AMSU antenna temperatures were

assumed in simulation; and 2) the “truth” has errors of its own in real data. The

206



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

degradation of sounding accuracy in the presence of “real clouds,” as compared to
soundings in clear cases, appears to be similar to that implied by simulation, as does the

accuracy of mid tropospheric temperature retrievals for clear cases.
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Figure C.7. AIRS RMS Temperature Difference from Truth vs. Effective Cloud
Fraction

Figure C.7 shows the RMS difference between retrieved 1-km tropospheric layer mean
temperatures and the collocated ECMWF 3-hour forecast for all accepted cases as a
function of retrieved effective cloud fraction. Results are shown for each of the 8 lowest
1-km layers of the atmosphere. Only those cases passing the appropriate temperature
profile test are included in the statistics. Agreement degrades with increasing cloud
cover, but only very slowly. The largest errors are in the 2 lowest layers in the
atmosphere, at moderate to high cloud fraction, where the percentage acceptance rate is
low. This degradation is similar to that shown in an analogous figure in Susskind, et al.,
(2003) for simulated retrievals. RMS temperature differences from ECMWF below 600
mb are somewhat larger than the 1-K goal for retrieval accuracy. Part of this difference

can be attributed to the fact that the ECMWF forecast is not perfect. It is also possible
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that the accuracy of the ECMWF forecast may be somewhat poorer with increasing cloud

cover.

Figures C.8a and C.8b are analogous to Figures C.5a and C.5b, but show RMS percent
difference of retrieved 1-km layer precipitable water from the ECMWEF “truth.” In these,
and other water vapor statistics, the RMS percent difference weights percent difference in
a given case by the “truth,” so as not to inflate percent differences for very dry cases,

according to
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where qlrft and qlt(m are the retrieved and true values of water vapor for case k. These

statistics should be used with caution, especially in the mid-upper troposphere, where
considerable errors could exist in the ECMWEF “truth.” Nevertheless, over ocean,
statistics are not appreciably different for cases passing the different tropospheric and
ocean skin temperature thresholds. As with regard to temperature, a larger degradation
occurs in agreement of humidity profile with ECMWF in the mid-lower troposphere over
land when the looser constituent profile criteria are used. We recommend at this time to
use the appropriate temperature test when attempting to assimilate water vapor at a given
level of the atmosphere. Soundings passing either tropospheric temperature test also pass
the constituent profile test because the temperature profile criteria are equal to, or tighter
than, those in the constituent profile test. For climate purposes, we recommend including
all cases passing the Constituent Test in the generation of the level 3 product, so as to

minimize a dry bias in the sample.

Figures C.9a,b are analogous to Figures C.7a,b and show water vapor percent differences
from “truth” for clear cases and cases passing the temperature test for the appropriate

level. Figure C.9b includes analogous results found in simulation (Susskind, et al.,
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2003). There is not a significant difference in water vapor retrieval accuracy occurring
between clear cases and all cases passing the appropriate temperature profile test with

real data, as in simulation.
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Figure C.8. C.8a (left) and C.8b (right)
Figure C.10 is analogous to Figure C.7, but for percent differences from ECMWF of 1-
km layer precipitable water as a function of retrieved effective fractional cloud cover.
Only soundings passing the appropriate temperature profile test for a given level of the
atmosphere (Mid-Tropospheric Temperature Test or Lower Tropospheric Temperature
Test) are included in the statistics, as was done in Figure C.7. Agreement with ECMWF
degrades slightly with increasing cloud cover primarily in the lowest 2 km of the
atmosphere, but not appreciably. Part of this could be due to sampling differences,
because the AIRS retrievals determine water vapor in the clear portions of the partially

cloudy scene, while the forecast values are for the whole scene.
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Figure C.9. C.9a (left) and C.9b (right)

The fundamental parameter used in the determination of geophysical parameters from
AIRS/AMSU data is the clear column radiance R ;> which represents the radiance AIRS
channel 1 “would have seen” if no clouds were in the field of view. Geophysical
parameters are determined which are consistent with ﬁi- Derived geophysical
parameters whose accuracy degrades slowly with increasing cloud cover implies that the
accuracy of ﬁi also degrades slowly with increasing cloud cover. ﬁi is an important

geophysical parameter derived from AIRS in its own right.

Figure C.11a shows the mean value of R ; (in brightness temperature units) from 650 cm™
to 756 cm™ for all non-frozen ocean cases 50°N — 50°S on 6 September 2002 passing the
Tight SST Test. The most opaque portion of the spectrum is near 667.5 cm’, and is
primarily sensitive to atmospheric temperatures near 1 mb (50 km). Radiances in the
surrounding spectral region are also primarily sensitive only to stratospheric temperatures

and are not affected by clouds in the field of view. Radiances at frequencies greater than
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690 cm™ see increasing amounts of the troposphere, especially between absorption lines
(the locally higher brightness temperatures) and are increasingly affected by cloud cover
with increasing frequency. Radiances between lines at frequencies higher than 740 ¢cm'™

are also increasingly sensitive to contributions from the ocean surface.
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Figure C10. AIRS RMS Precipitable Water Percent Difference from Truth vs.
Effective Cloud Fraction

Figures C.11b and C.11c show the mean and standard deviation of the (tuned) differences
between ﬁi and R; computed from the “truth” for all cases in this geographic domain
passing the Tight SST Test, the standard SST Test, the Lower Tropospheric Temperature
Test, and the Mid-Tropospheric Temperature Test, respectively. Figure C.11c also
contains the channel noise spectrum. In this calculation, the “truth” is taken as the
ECMWEF forecast of temperature-moisture-ozone profile, along with the ECMWF ocean
surface skin temperature. The Masuda Ocean surface emissivity model (1988), revised
by Wu and Smith (1997), was used to generate the ocean surface emissivities in the
calculation of the expected true radiances, assuming a surface wind speed of 5 m/sec.

The surface contribution is the biggest uncertainty in the computation of the “truth”
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radiances because of errors in both the true ocean skin temperature and in the true surface

emissivity.
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Figure C.11. Tuned Clear Column Brightness Temperature minus "Truth"

It is apparent that the difference of clear column radiances from those computed from the
truth increases only slightly in the more difficult cloud cases, and in general matches
expected radiances to within the AIRS noise level. Standard deviations of observed
minus computed brightness temperatures for stratospheric sounding channels are actually
lower than the channel noise, because radiances of a AIRS fields of view are averaged
together to produce the cloud cleared radiances. The increasing difference of clear
column radiances from those computed from the “truth” between absorption lines above

740 cm™ has a large component arising from errors in the “truth.”

It is noteworthy that the biases of observed minus computed brightness temperatures are
essentially zero for all cases, with some small negative biases between absorption lines at
the frequencies sensitive to the lowest portions of the atmosphere in cases passing the

Mid-Tropospheric Temperature Test as a result of small cloud clearing errors in these
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cases. First of all, this implies that the tuning coefficients derived from clear ocean night
ocean cases on 6 September 2002 are equally well applicable to a much larger ensemble
of ocean cases on the same day. Secondly, it demonstrates that clear column radiances
for cases passing the Mid-Tropospheric Temperature Test are essentially unbiased at
most sounding channel frequencies. The standard deviations of the clear column
radiances from “truth” are also only slightly dependent on the degree of cloud
contamination. Errors in the “truth” dominate the standard deviations shown in Figure
C.11c, especially at 667.5 cm™, which is primarily sensitive to 1 mb temperature, and at
frequencies sensitive to the ocean surface. In addition, the larger standard deviation at
679.31 cm™ is a result of significant absorption by O,, and those at 729.0 cm™, 730.8

cm’, and 745.1 cm™, and 754.4 cm™ result from significant absorption by H,0.

Figure C.12 shows histograms of the difference between observed and computed
brightness temperatures for the two channels indicated by the black dots in Figure C.11,
at 724.52 cm™ and 749.19 cm™ respectively. These frequencies are primarily sensitive to
temperatures at 580 mb and 900 mb respectively, with a large surface contribution at
749.19 cm™. Results are shown for the four most stringent quality tests. The differences
between the accuracy of clear column radiances at 724.52 c¢cm”, for cases passing the
different quality tests with spatial coverage ranging from 9.14 percent to 58.27 percent,
are miniscule, with essentially no outliers in any category. Differences are somewhat
larger at 749.19 cm™, but increase only slightly for cases passing the Mid-Tropospheric
Temperature Test. For this reason, all clear column radiances are flagged as good for

those cases passing the Mid-Tropospheric Temperature Test.

It is apparent from Figure C.11 that the tuning coefficients derived for clear ocean night
cases on 6 September 2002 are applicable to all ocean night cases on that day. Figures
6.13a-c show analogous results for all (global) cases passing the Mid-Tropospheric
Temperature Test on 6 September 2002 and 25 January 2003 corresponding to a different
season and year. The biases (necessary tuning) are shown to be globally applicable, and
also constant in time. Standard deviations from the truth at channels more sensitive to the
surface are somewhat larger than for the non-frozen ocean cases because of larger errors

in the “truth” arising from greater uncertainty in both surface skin temperature and
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spectral emissivity. The sounding results for September 2004 shown in this paper further
demonstrates the stability of the tuning coefficients derived from September 2002
observations.
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Figure C12a. Brightness Temperature Difference, 724.52 cm

Operational numerical weather prediction centers currently assimilate radiance
observations from IR sounders only for those cases thought to be unaffected by clouds
(McNally, et al., 2000). This criterion severely limits the number of IR channel radiances
being used in the assimilation processes, and tends to minimize the potential
improvement in forecast skill achievable from optimal use of AIRS radiance
observations. We encourage operational centers to attempt to use AIRS derived clear
column radiances in their assimilation, applying the same quality control so as to accept

only those clear column radiances “thought to be unaffected by clouds.”
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C.2 Sample Monthly Mean Fields and their Interannual
Differences

C.2.1 Atmospheric and Skin Temperatures

In generating monthly mean fields of atmospheric temperatures, the appropriate level
dependent quality flags as described in Section 5.4.11.4.2 are used. For temperatures at
pressures 200 mb and lower (higher altitude), all soundings passing the Stratospheric
Temperature Test are averaged. For atmospheric temperatures at all other levels, all

soundings passing the Mid-Tropospheric Temperature Test are averaged.

Figure C.14a shows the monthly mean field for January 2004 of 500-mb temperature
derived from accepted AIRS/AMSU retrievals. Monthly mean fields containing only
AM and PM overpasses are generated separately and then averaged together with equal
weight to produce the monthly mean field. Figure C.15b shows the difference between
the AIRS retrievals and the collocated ECMWF 3-hour forecast 500-mb temperatures.
All AIRS products are derived and shown on a 1°x1° latitude-longitude grid. White
indicates agreement to within 0.5K, with each color interval corresponding to differences
increasing by 1K (0.5-1.5, 1.5-2.5, etc.), with shades of red meaning AIRS is warmer.
The global mean difference between AIRS and ECMWEF 500-mb monthly mean
temperature is —0.01K and the spatial standard deviation is 0.45K. This is a positive and
expected result, as the ECMWF forecast is very accurate at 500 mb. The largest
differences occur at the highest latitudes, where AIRS retrievals are 0.5 to 1.5K cooler

than ECMWF.

Figures C.14c and C.14d show analogous results for the difference of monthly
mean 500-mb temperature between January 2004 and January 2003. Figure C.14c shows
significant interannual differences in monthly mean 500-mb temperatures, with a spatial
standard deviation of 1.54K between the 2 months, and a global cooling of 0.36K in
January 2004 compared to January 2003. Virtually identical features appear in the
ECMWEF forecast (not shown). Particular attention should be given to the areas near
45°N,150°W; 50°S,160°W; 50°S,40°W; 50°S,20°E; and 50°S,100°E; in which January

2004 was substantially warmer than January 2003.

217



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0

al AIRS a“?unuurqsagi“" (k)
o = AT, T T

]

60 X I
300H \; &
i U t ’
K %
o y H‘k\ <9
"\{ J
60§ 605 __z
0 §gg v v 0 ; % 35 R WV WE T £ Teo
?.?.E.ﬂ ﬂ! 0 ﬂl ] %ﬂ [ H# & !5t a 2'* 0 2.! 0 ﬂ'f.’ -3.50
) GLOBAL I‘kl— 57.3% STAIMJW DEY= q‘l‘:’nsl a0 ﬂ.mt HRMI- -CTN ﬂlllﬂ:\" "(:R:J 0 43
a ature ara re
anuary anuur'p "T g . 2003
Y W ﬁa’ L

'{\"QLU :

it
=l

LY
Or

u

.50 .50 -9.50 -6.50 -3.50 -0.50 1.50 +4.50 W50 10,50
GLOBAL MEAN=  -0.38 ﬂ-ﬂlﬂ“ﬂ Dﬂl 1.54 GLOBAL MEAM=  =0,05 STD= 0.59  CORR= 0.97

Figure C.14. Monthly Mean, 500 mb Temperature (K)

The difference between the two interannual difference fields, shown in Figure C.14d,
indicates excellent agreement in global mean cooling (AIRS has larger cooling than
ECMWEF by 0.05K), spatial standard deviation (0.39K), and spatial correlation 0.97. The
small spatially coherent differences in 500-mb temperature between AIRS and ECMWF
in Figure C.15b cancel out for the most part in the interannual difference field. This is
reflected in the fact that the spatial standard deviation of the difference of interannual
difference field is less than of the monthly mean field. We are investigating the cause of
these small regional biases, which do not appear to be very significant in the interannual

difference sense.

Figures C.15a-C.15d show analogous results for 1-mb temperature, a level of the
atmosphere at which ECMWF should be somewhat less accurate. AIRS is biased warm
globally compared to ECMWF at 1 mb by 1.16K, and the spatial standard deviation
between the two fields (2.62K) is significantly larger than it is at 500 mb. The monthly
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mean temperature differences between January 2004 and January 2003 are much larger at
1 mb than 500 mb, especially north of 60°N, with considerable cooling of more than 20K
near the North pole. AIRS data shows a global cooling of 1.47K at 1 mb, with a spatial
standard deviation of 4.13K. AIRS agrees reasonably well with ECMWEF in terms of
global mean, standard deviation, and correlation, but the difference in the spatial standard
deviation of the difference of AIRS from ECMWF is considerably larger than at 500 mb,
at which ECMWEF is globally more accurate. AIRS is most likely adding information at
this level from the climate perspective. It should be noted that, as at 500 mb, the spatial
standard deviation of the difference of the interannual difference fields is considerably

less than of the difference of the monthly mean fields.
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Figure C.15. Monthly Mean, 1 mb Temperature (K)
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Table C.1 shows analogous statistics for AIRS January 2004 global mean temperatures
and differences of global mean temperatures between January 2004 and January 2003, as
well as the difference between AIRS and ECMWF of the global mean interannual
differences, the spatial standard deviation of the two interannual difference fields, and

their correlation.

Table C.1. Monthly Mean Temperatures (K)

January 2004 January 2004 — January 2003
AIRS AIRS-ECMWF AIRS AIRS-ECMWF
Pressure mean STD mean STD mean STD mean STD corr

1000mb 28742 11.06 0.53 1.15 -0.05 1.44 0.14 0.90 0.82
850 mb 280.32  10.79  0.08 0.86 -0.09 1.69 0.04 0.71 0.93
700 mb 273.23 9.95 0.31 0.51 -0.28 1.54 -0.05 0.45 0.97
600 mb 266.27 10.00 0.40 0.43 -0.15 1.55 0.07 0.42 0.98
500 mb 257.39  10.36 -0.01 0.45 -0.36 1.54 -0.05 0.39 0.97
400 mb 246.02 999 -040 0.39 -0.45 1.50 -0.15 0.39 0.95
300 mb 232.58 835 -0.35 0.43 -0.10 1.33 0.03 0.46 0.94
200 mb 220.16 2.99 0.35 0.56 -0.06 1.99 -0.13 0.53 0.99
150 mb 212.85 6.99 0.14 0.60 0.23 2.07 0.06 0.53 0.99
100 mb 203.85 1236 -046  0.64 -0.10 2.57 0.16 0.84 0.99
70 mb 20496 11.04 0.26 0.80 -1.01 2.35 -0.21 0.81 0.99
50 mb 209.95 7.71 0.22 0.79 -0.53 2.37 0.04 1.03 0.99
30 mb 216.08 564 -0.17 0.67 0.10 3.05 0.09 0.91 0.99
10 mb 228.33 6.05 0.09 0.91 -0.06 2.74 0.02 0.72 0.99
1 mb 265.20 8.96 1.16 2.62 -1.47 4.13 0.26 1.76 0.99

Global mean interannual monthly mean temperature differences between January 2004
and January 2003 as retrieved from AIRS vary somewhat regularly as a function of
height. There is cooling up to 200 mb, having a peak value in the region 400-500 mb, but
being near 0.0K at 1000 mb and 200 mb. In the stratosphere, January 2004 is again
cooler than January 2003, primarily in the region 70 mb to 50 mb and also at 1 mb. The
magnitude of the biases in interannual global mean temperature differences determined
from AIRS, and contained in the ECMWF 3-hour forecast, are generally less than 0.1K
and are considerably smaller than those of monthly mean temperatures themselves. This
shows that the small regional dependent biases in monthly mean temperatures tend to
cancel in the interannual difference sense at all levels of the atmosphere. The spatial

standard deviations of the difference of interannual mean differences are also smaller
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than those of the monthly mean temperatures. Spatial correlations of the interannual
mean differences found in each data set are very high, especially in the stratosphere,
where the spatial standard deviation of the interannual mean differences are considerably

larger than in the troposphere.

Figure C.16a shows the interannual monthly mean difference of surface skin temperature
derived from AIRS soundings. This field is constructed in a manner analogous to those
shown in Figures C.14c and C.16c, except that over non-frozen ocean (referred to
henceforth as “ocean”), only those cases passing the standard Sea Surface Temperature
Test were used in generating the AM and PM monthly mean fields, while over land, sea-
ice, and coasts (referred to henceforth as “land”), all cases passing the Mid-Tropospheric
Temperature Test were used. To generate the monthly mean fields, monthly mean AM
and PM fields were averaged together with equal weight, provided at least 5 observations
during the course of the month were in each the AM and PM monthly mean fields. In the
event that this requirement is not met over land, those grid boxes are not included in
either the monthly mean or interannual difference fields. Over ocean, AM and PM
monthly mean temperatures are weighted together equally unless no observations are
included in one of the cases. In this situation, the monthly mean value for the other time
period is used. If no observations are found for either time of day, that grid point is not
included in the monthly mean or interannual difference fields (note the data void in the

area of preferential stratus cloud cover near 20°S, 10°E).

The spatial patterns of Figure C.16a show some similarity to those of Figure C.14c. Over
ocean, the areas of warm anomaly for January 2004, mentioned above, also appear,
though considerably weaker, in the surface skin temperature interannual difference field.
The strong negative sea surface temperature differences near 30°S,130°W and

30°S,10°W are not well reflected in the 500-mb temperature difference field however.

Figure C.16b shows the interannual difference of colocated surface skin temperature as
included in the ECMWF 3-hour forecast field. The basic patterns in sea surface

temperature interannual differences agree well, including the relative cooling of January
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2004 compared to January 2003 at the equator between 120°W and 180°W. ECMWF
land temperatures are less reliable for use as “truth.”
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Figure C.16. Surface Skin Temperature

Figures C.16¢c and C.16d show the difference of the AIRS and ECMWF interannual
difference field. Figure C.16c shows that agreement over ocean is much better than over
land. Figure C.16d shows the difference of the interannual difference fields only over
ocean 50°N-50°S. The color scale is twice as fine as previous scales, in that white
represents + 0.25K and every color is an additional 0.5K. The spatial standard deviation
is 0.51K and the correlation is 0.71. Some of the largest differences occur south of 40°S,
where ECMWF may be less accurate. It is interesting to note that while the warming in
January 2005 near 50°S described previously shows up in the ECMWF interannual
difference field, it is weaker than that found in the AIRS field. Significant negative
differences are shown in Figure 3d near 45°N,50°W and 40°N,150°E that appear to be
artifacts in the AIRS interannual difference field, as ECMWF should be accurate in these

areas.
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C.2.2 Constituent Profiles

Version 4 of the AIRS Science Team algorithm generates vertical profiles of water vapor,
ozone, and carbon monoxide in terms of layer column densities (mol/cm?) in 100
atmospheric layers. In generating monthly mean fields, the entire profile is accepted if
the Constituent Test is passed. CO monthly mean fields are not shown as we do not have

another measure of this quantity to compare with.
C.2.2.1 Water Vapor Profiles

Water vapor fields are presented in terms of total integrated water vapor column density
above the surface, as well as above different atmospheric pressures. As with all derived
products, water vapor profiles represent atmospheric water vapor in the clear portion of
the partially cloudy scenes. It does not include water vapor above, within, or below
clouds in the scene. Thus, there could be a sampling difference between derived water
vapor fields and water vapor as predicted by forecast models, or as measured by
microwave based observations, both of which would include water vapor in the cloudy

portion of the scene.

Figures C.17a and C.17b show monthly mean total precipitable above the surface (cm)
derived from AIRS/AMSU observations for January 2004, and the difference of AIRS
monthly mean total precipitable water contained in the collocated ECMWEF 3 hour
forecast fields. The global mean AIRS total precipitable water for all cases passing the
Constituent Test (roughly 85% of all observations) is 2.42 cm. If tighter tests were used
(see Susskind, et al., 2005), sampling would eliminate most of the cloudiest cases, and
less water vapor would result. We have tried to minimize a clear sky bias in monthly
mean fields by including as many cases as possible. In a global mean sense, AIRS is
moister than ECMWF by 0.17 cm (7.0%) with a spatial standard deviation of 0.16 cm
(7.4%).
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Figure C.17. Total Precipitable Water (cm)

Figures C.17¢ and C.17d show analogous results for the interannual difference of total
precipitable water between January 2004 and January 2003. Globally, AIRS shows
0.02 cm of precipitable water more in January 2004 than January 2003, or roughly 1% of
the global mean value of 2.42 cm. This apparent “moistening” is probably within the
noise of the measurement. The spatial standard deviation of the difference is 0.34 cm and
is almost 15% of the global mean. Large spatially coherent differences exist, with
considerable drying along the equatorial Pacific Ocean, and moistening in the tropical
Atlantic and Indian Oceans and in the extratropical oceans. These features are in general
correlated with interannual sea surface temperature differences. The relatively small
negative sea surface temperature difference near the equator between 180°W and 120°W

is accompanied by an extremely large drying in this and adjacent areas.

Figure C.17d shows very good agreement with the ECMWEF interannual difference of
total precipitable water, with a spatial correlation of 0.94. The global standard deviation

of the interannual difference of total precipitable water between AIRS and ECMWF is
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smaller than that of the monthly mean fields. This also indicates the existence of regional

biases that tend to cancel when interannual differences are taken.

Figures C.18a-d show analogous results for total precipitable water vapor above 500 mb
(mm*10). ECMWEF values of water vapor in the upper troposphere are essentially model
driven and should be highly suspect. AIRS has a dry global bias of 0.053 mm compared
to ECMWEF (roughly 5% of the global mean) and the spatial standard deviation of the
difference is 0.117 mm (=10%). AIRS data indicates a drying of .015 mm above 500 mb
(compared to a global mean of 0.996 mm) in January 2004, compared to January 2003
corresponding to 1.5% of the total. This result may be in the noise level of accuracy at
this height of the atmosphere. The spatial standard deviation of the interannual difference
is 40% of the global total, indicating a considerable redistribution of upper tropospheric
water vapor between the two Januaries. The spatial pattern of interannual differences of
upper tropospheric water vapor is similar to that of total precipitable water in some areas,
but quite different in others. Note, for example, the region 120°E-180°E, 20°N-20°S.
AIRS and ECMWEF interannual differences agree closely, with a correlation of 0.95.
These statistics, as well as analogous statistics for precipitable water above 850 mb, 700

mb, and 300 mb, are shown in Table C.2.

Table C.2. Monthly Mean Precipitable Water

January 2004 January 2004 — January 2003
AIRS AIRS-ECMWF AIRS AIRS-ECMWF
Pressure mean STD mean STD mean STD mean STD corr
mb
surf 24.18 15.88 1.75 1.83 0.21 3.44 0.01 1.19 0.94
850 11.94 8.39 0.95 1.17 0.05 2.51 -0.05 0.98 0.93
700 473 3.83 0.07 0.42 -0.08 1.45 -0.03 0.51 0.95
500 0.996 0.877 -0.053 0.117 -0.015 0.403 -0.014 0.132 0.95
300 0.0746  0.0551 -0.0074 0.0148 -0.0018 0.0239 -0.0037 0.0116 0091
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Figure C.18. Precipitable Water above 500 mb (mm*10)

C.2.2.2 Total O3 Burden

Because AIRS is an infrared sounder, ozone profiles are produced day and night, as well
as in polar winter. TOMS (Herman, et al., 1991) produces highly accurate measurements
of total ozone, but operates only under sunlight conditions because it is an ultraviolet
based instrument. In generating AIRS monthly mean fields of total O, all cases passing
the Constituent Test were averaged, including both ascending (day) and descending
(night) observations. The monthly mean AIRS total ozone field for January 2004 is
shown in Figure C.19a. The monthly mean TOMS ozone field, shown in Figure C.19b, is
the average of all TOMS daily fields, originally given on a 1.25° longitude by 1.0°
latitude grid. We generated the monthly mean TOMS total ozone field by averaging
TOMS daily mean fields. The daily TOMS data was obtained from the website

http://toms.gsfc.nasa.gov/ftpimage.html. At least 10 days of observations were needed

for a given grid point to generate the monthly mean field. Figure C.19c shows the

difference between the monthly mean AIRS and TOMS total ozone fields for January
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2004. Care should be taken about differences near the TOMS terminator, at about 61°N,
because of possible time of month sampling differences.
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Figure C.19. Monthly Mean Total O3 (DU)

60 §

There is a reasonable agreement between monthly mean AIRS and TOMS total ozone
fields. The global mean difference is 3.44 DU (1.3% of the TOMS global mean) and the
spatial standard deviation is 10.09 DU (3.7%). It is important to note that AIRS produces
reasonable values of total ozone north of the terminator, where no TOMS data exists. It
is clear that some large scale spatial systematic differences exist between the AIRS and

TOMS fields. The cause of this needs to be understood.

Figures C.20 a-c show analogous results for the difference of monthly mean total ozone
between January 2004 and January 2003. Features of the interannual differences of total
O, are depicted well by AIRS. The spatially coherent differences have cancelled out to
some extent, though AIRS appears to show a spurious increase in global total ozone by 5

DU. Opver extratropical oceans, spatial patterns of interannual differences in total ozone
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are similar to, and in phase with, those of 70-mb temperature (not shown), which are in

turn out of phase with those of 500-mb temperature and surface skin temperature.

The spatial standard deviation of the difference of the interannual difference fields is 8.71
DU, compared to 10.09 DU for the monthly mean fields. It is encouraging to see a
spatial correlation of 0.80 for the interannual difference fields where they both exist, and
a spatially coherent interannual difference field at high latitudes where TOMS data does
not exist. We are examining the causes of the systematic differences between AIRS and
TOMS and expect an improved O, retrieval algorithm in the next version of the AIRS

retrieval algorithm to become operational at the Goddard DAAC.

al AIRS Ozone (DI.IU) b) TOMS Ozona {DU
January 2004 minus Januvary 2003 January 2004 minus anuvary 2003

90 N
. Tl e
80 = "
L P € at v' ;

60
30 N 30 - : (,
| ‘ly . i
EQ EQ Iy My l" o
T T 3 . fL) 3
30 §— ~ 30 J '\i ? j\uf{a EQL
2] I 2
60 § 60 § s
90 4 180 0¥ TI0W B0 W UL TZ0E 180
[ = o o e e e mmmm——
-35.00 -65.00 -35.00 =5.00 15.00 45.00 75.00 105.00 -35.00 -65.00 -35.00 =5.00 15.00 45.00 75.00 105.00
GLOBAL MEAN= 3.04 8Th= 13.87 CORR= «8 GLOBAL MEAM= -3.88 3TD= 13,87 CORR= .04
° January r\lloRn54 "r:1llnnuu'l T.Fu"nsnury 2003
30

[+]
80 ng:@
4
30 N = he 37#
£Q E

T T

i )
§0 § s
Y e R
T_T70W

-§5.00 -#5.0¢ -35.00 -3.00 15.00 45.00 75.00 {05.00
GLOBAL MEAN= 5.19  STD= 8.71 CORR= 0.80

Figure C.20. Monthly Mean Total O3 (DU), January 2004 minus January 2003
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