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1. INTRODUCTION 

The Atmospheric Infrared Sounder (AIRS) is a facility instrument, selected by NASA to 

fly on the second, Earth Observing System polar-orbiting platform, EOS-Aqua.  The EOS 

Aqua was launched on 4 May 2002, from Vandenberg, CA, into a 705-km altitude, 

circular polar orbit, with 1:30 AM ascending node. The same platform also carried the 

NOAA operational Advanced Microwave Sounding Unit (AMSU) and the microwave 

Humidity Sounder of Brazil (HSB).  AIRS is designed to meet the requirements of the 

NASA Earth Science Enterprise climate research programs and the NOAA operational 

weather-forecasting plans. AIRS, AMSU and HSB were put into the operational, routine 

data-gathering state on 31 August 2002. AIRS and AMSU have worked perfectly since 

then, but the scan motor of HSB failed in February 2003, causing the loss of the HSB 

data. 

The launch of AIRS on the EOS Aqua spacecraft opened a new era in imaging, 

hyperspectral infrared sounding. Other hyperspectral infrared sounders have preceded 

AIRS: the Infrared Interferometer Spectrometer (IRIS) experiment on Nimbus 3 and 4 

(Conrath, et al., 1970) collected data from April - July 1969 and April 1970 - January 

1971. The Infrared Monitor for Greenhouse Gases (IMG) (Kobayashi, et al., 1999) 

collected data from October 1996 - June 1997.  Both instruments sounded at the sub-

spacecraft point only and were Fourier Transform Spectrometers (FTS), which operated 

for less than one year. The AIRS design, a cooled grating-array spectrometer, with no 

moving parts, was selected for its exceptional reliability, operational simplicity and 

radiometric qualities. AIRS is a +/-50-degree cross-track scanner, i.e., the data can be 

used to create hyperspectral images. Since the start of routine data gathering on 31 

August 2002, AIRS has returned 2.9 million spectra of the upwelling radiance each day.  

Details of the AIRS design and measurement objectives are provided in Aumann, et al., 

(2003); details of the prelaunch testing and on-board performance analysis are given in 

Pagano, et al., (2003); Lambrigtsen (2003) describes the AMSU and HSB instruments. 

An overview of results, obtained with the first three years of AIRS data, is given in 
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Chahine, et al., (2006). The accuracy of the geophysical parameters, derived from the 
Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of 
fractional cloud cover, using the V4.0 Level 2 algorithm, is analyzed in Susskind, et al., 
(2006). 

In the following document we present the theoretical basis of the AIRS Level 2 products 

algorithm. The Level 2 products algorithm is designed such that all AIRS data products 

will simultaneously satisfy the measurements in a least-squares sense. This requires a 

complex interaction between algorithms for the various products. For this reason, all 

products are discussed in one document.  The overall flow of data is shown in Figure 1, 

with reference to chapters in the ATBD. The algorithm described in this document has 

been implemented as the AIRS Level 2 Product Generation Executive (PGE), Version 

4.0, at the Goddard Space Flight Center (GSFC) Distributed Active Archive Center 

(DAAC). 

AIRS is an imaging hyperspectral sounder, which covers 80% of the globe twice per day, 

during the ascending (day) and the descending (night) overpasses. However, the images 

are in scan coordinates, with considerable overlap at high latitudes and gaps near the 

equator. Level 3 products use the position-tagged Level 2 products to create eight-day 

and monthly mean images, which will ultimately be used to create the AIRS climatology. 

Separate fields are produced for each of the ascending (day) and descending (night) 

orbits. The Level 3 algorithm and production rules, using the Level 2 quality flags, are 

described in Appendix B.   

Some results, obtained with the first three years of AIRS data, are shown in Appendix C.  
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Figure 1. AIRS Level 2 Processing Flowchart 
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2. AIRS/AMSU-A/HSB DATA PRODUCTS 
2.1 Standard Products 
The AIRS Level 2 PGE produces four different files in EOS HDF Swath format: 

• Standard Product 
• Cloud-Cleared Radiance 
• Support Product 
• Quality Assessment Support Product 
 

Successive files provide increasingly detailed information about the AIRS Level 2 

retrievals.  

It is worth noting that each file encompasses one ‘granule’ of AIRS data. Granules are 

formally defined as the smallest aggregation of data that is independently managed (i.e., 

described, inventoried, retrievable).  An AIRS granule has been set as 6 minutes of data, 

corresponding to exactly 45 scanlines of AMSU data or 135 scanlines of AIRS and HSB 

data. The UTC start time of the N-th granule of each data is (146+(N-1)*360)/3600 

hours. The orbit repeat pattern of the EOS Aqua is 16 days, i.e. the spatial coverage of the 

Nth granule is repeated (almost) exactly 16 days later.   

The Standard Product consists of retrieved estimates of cloud and surface properties, 

plus profiles of retrieved temperature, water vapor, ozone and a flag indicating the 

presence of cloud ice or water.  Estimates of the errors associated with these quantities 

will also be part of the Standard Product.  The profile vertical resolution is 30 points total 

between 1000 mb and .02 mb; WMO pressure levels are used in the troposphere and 

lower stratosphere.  The Standard Product contains quality assessment flags in addition to 

retrieved quantities.  The Standard Product will be generated at all locations atmospheric 

soundings are taken. 

Cloud-Cleared Radiances are produced along with the AIRS Standard Product, as they 

are the radiances used to retrieve the Standard Product.  Nevertheless, they are an order 

of magnitude larger in data volume than the remainder of the Standard Products and, 

many Standard Product users are expected to have little interest in the Cloud Cleared 
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Radiance.  For these reasons they are a separate output file, but like the Standard Product 

will be generated at all locations. 

The Support Product includes higher vertical resolution profiles of the quantities found 

in the Standard Product, plus intermediate output (e.g., microwave-only retrieval), 

research products such as the abundance of trace gases, and detailed quality assessment 

information.  The Support Product profiles contain 100 levels between 1100 and .016 mb; 

this higher resolution will simplify the generation of radiances using forward models, 

though the vertical information content is no greater than in the Standard Product 

profiles.  The intended users of the Support Product are researchers interested in 

generating forward radiance, or in examining research products, and the AIRS algorithm 

development team.  The Support Product will be generated at all locations as Standard 

Products. 

The final AIRS Level 2 data product is the Quality Assessment Support Product.  This 

output is intended to provide insight into the detailed workings of the AIRS retrieval 

algorithm, and will contain a large number of intermediate retrieved quantities, their 

estimated uncertainties, and associated quality assessment parameters.  Because of its 

large size, the quality assessment Support Product will be generated only at those 

locations where the AIRS retrieval algorithm is known to be functioning poorly, based 

upon quality assessment information.  The intended users of the Quality Assessment 

Support Product are the AIRS retrieval algorithm development team, and scientists 

validating the performance of these algorithms, primarily at the Team Leader Science 

Computing Facility (TLSCF) at JPL.  It will not be generated at the GSFC DAAC. 

2.2 Research Products 

AIRS will produce a number of research products that will be developed and tested after 

launch.  Primary among these are trace constituent profiles of CO and CH4, Outgoing 

Longwave Radiation (OLR) and Clear Sky Outgoing Radiation (COLR), and possibly 

total CO2 burden. As opposed to the standard products, research products are more 

experimental not only for the algorithm, but also for the validation.  The intent is to 
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ultimately upgrade those research algorithms which pass peer review to standard 

products.  
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3. INPUT QUALITY CONTROL AND ANCILLARY 
PRODUCTS 

Key to the quality of the Level 2 products is careful quality control of the calibrated 

radiances. The quality control is divided into inter-instrument QC, microwave QC,  

infrared QC, and visQC.  

The inter-instrument QC simply validates that valid data for a 3x3 ensemble of AIRS 

footprints exist.  For all instruments whose data are present and marked valid with state = 

0 (PROCESS), the algorithm checks: 

          1) Time is later than Jan 01, 1994. 

          2) Latitude is in {-90.1, 90.1}. 

          3) Longitude is in {-180.1, 180.1}. 

If any data are bad, that instrument is marked bad. 

Of those that pass the first test, pair-wise comparisons are made of timestamps and 

locations to make sure the observations are synchronized.  If any comparisons fail, then 

all data for this FOV are considered bad. 

          4) AMSU distance to central AIRS FOV is greater than 45 km. 

          5) AMSU distance to central AIRS FOV is greater than 17 + 1/cos(satzen) km. 

          6) |Time(AMSU) - Time(AIRS) - 0.66667 sec| > 2 sec 

          7) AMSU distance to central HSB FOV is greater than 45 km. 

          8) AMSU distance to central HSB FOV is greater than 17 +  1/cos(satzen) km. 

          9) |Time(AMSU) - Time(HSB) - 0.52167 sec| > 2 sec 

          10) HSB distance to central AIRS FOV is greater than 45 km. 
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          11) HSB distance to central AIRS FOV is greater than 17 +  1/cos(satzen) km. 

          12) |Time(HSB) - Time(AIRS) - 0.145 sec| > 2 sec 

3.1 Microwave QC 

AMSU-A data is screened for the following problems: 

 
1) AMSU-A1 State is not 0 (Process) 

Any state other than process indicates data is missing or bad. 
AMSU-A1 data is most important so all AMSU-A data is screened 
based on it. 

 
2) BT > 350 K or BT < 50 K 

 
 If any channel is out of bounds, the entire FOV is discarded. 
 
 HSB data is screened for the following problems: 
 

1) HSB State is not 0 (Process) 
     Any state other than process indicates data is missing or bad. 
 
2) BT > 350 K or BT < 50 K 
 

If any channel is out of bounds the entire FOV is discarded. 
 

3.2 IR QC and Local Angle Adjustment 

The IR QC has three components: QC using flags from Level 1B, missing data fill in, and 

local angle adjustment. 

3.2.1 QC using Flags from Level 1B 

Individual IR radiances are excluded from further processing if: 

 
1) AB_state in static channel properties file is > 2. 

 
    2) ExcludedChans in L1B input is > 2.  (ExcludedChans is a copy of AB_State at 

the time of L1B processing.  Under normal circumstances this check is 
redundant with #1, but it is possible for L2 to be processed later with different 
information in the channel properties file.) 

 
    3) High noise is indicated by CalChanSummary bit 3. 
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    4) A gain, offset problem, or "pop" is indicated by CalFlag bits 4-6. 
 
    5) Radiances converted to BT fall outside [175 K - 10*NEDT, 360K + 10*NEDT + 

solar], where the solar allowance is: 
 

0 for night data 
 

0.5 * PI*(RADIUS_SUN/DISTANCE_SUN)**2 *Solar_surface_radiance  
for day data 

 
The entire FOVs are excluded from further processing if: 
 

1) No valid solar zenith angle is available. 
 
2) More than 20 channels fail BT range test in #5 above. 

 

3.2.2 Missing Data Files 

The V4.0 physical retrieval uses a relatively small fraction of the available 2378 

channels. These channels are identified in a name list.  Channels, flagged as bad in the 

L1B data for a given scene, are not used in the physical retrieval algorithm.  The 

regression step uses a large fixed subset of the 2378 available channels, given in a 

separate name list. If the IR radiances of some of these channels are excluded, based on 

the L1B flags, fill-in values are used.  Due to the highly redundant nature of the 

spectrum, the fill-in values can be calculated based on a Principle Components (PCs) 

approach. The PCs were trained on calculated spectra from standard profiles.  If more 

than TBD of the channels in the name list are filled in, the spectrum is rejected. 

3.2.3 Local Angle Adjustment 

AIRS makes a 90-degree measurement, cross-track between -49 and +49 degrees. The 

data analysis, however, uses the data in 3x3 clusters with 30 scan angles between -49 and 

+49 degrees. A primary assumption of cloud clearing (Section 5.2) is that within a 3x3 

array of 9 AIRS FOVs the differences are dominated by differences in clouds.  Local 

angle adjustment removes one potentially confounding source of intra-FOV variation: 

differences in observing geometry.  In each 3x3 there are 3 observations at each of 3 

different scan angles.  This step makes small adjustments to the spectra for the 3 highest-
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angle and 3 lowest-angle FOVs so all FOVs resemble those which would be observed at 

the central angle.  No adjustment is applied to the central FOVs.  

The actual adjustment is calculated using a PCs approach.  The PCs were trained on 

calculated spectra from standard profiles at different scan angles.  Adjustments are 

assumed to by symmetric about nadir. 

In the L2 system missing or bad data is first filled using the PCs.  Then final PCs are 

calculated, and the radiances are adjusted. 

3.3 V/NIR QC and V/NIR Cloud Flags 

Any V/NIR data less than 0.0000001 radiance units for any channel and any pixel within 

a FOV excludes the entire FOV from further processing. The V/NIR channels are for 

diagnostic purposes only. They are not used in the routine L2 data processing. 

3.4 Background Climatology 

A background climatology “Clim” is available to all retrievals on a 2.5 degree mercator 

grid using 100 levels. In L2 V4.0 Clim T, H2O are used directly only in the MW-Only 

retrieval step.  Reliance on the water climatology is key when HSB data are not available. 

This is discussed in Section 5.1. The first pass cloud clearing uses the MW product as its 

input state, and so uses Clim data indirectly. 

The climatology is based on two files: "NCEP" and "UARS." 

"NCEP" has temperature profiles from the surface to 100 mb and water profiles from the 

surface to 300 mb as monthly means derived from the 20 year (1979-1998) reanalysis on 

a 2.5 degree mercator lat/lon grid. 

"UARS" has temperature, water vapor and ozone month means and zonal (latitude) 

means. The information below 100 mbar comes from the NCEP reanalysis, above 100 

mbar from the microwave limb sounders (UARS and MLS). 

The PGE fills its climatology from these two files as: 

1) Temperature profile: 
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      a) below 100 mbar from NCEP, tri-linearly interpolated by month, 

          lat, lon and then log-pressure interpolated onto the 100 levels. 

      b) above 100 mbar Temp is extrapolated using P**4 extrapolation 

2) H2O profiles.  From the “NCEP” file below 300 mb, tri-linearly interpolated by 

month, lat, lon. Above 300 mb the "UARS" file is used, linearly interpolated 

between two latitude zones. 

3) Ozone profiles.  From "UARS" file, linearly interpolated between two latitude 

zones.  No time interpolation. 

4) The AIRS retrievals are based on the absorption by CO2.  The abundance of 

CO2 is increasing currently at the rate of 2 ppmv/year. In addition, there is a +/-5 

ppmv seasonal and latitudinal variability in the CO2 column abundance. The 

AIRS L2 PGE assumes that the abundance of CO2 is fixed at 370 ppmv globally. 

This value is appropriate for the year 2002 when AIRS was launched. The next 

edition of the PGE (V5) will use a linear time dependence from name list, but no 

seasonal or latitudinal dependence. 

3.5 AVN Forecast PSurf 

The AVN forecast surface pressure, PSurf, is used by the L2 retrieval. The surface 

pressure is available on a one-degree grid.  The surface pressure is calculated from the 3-, 

6-, and 9-hour forecasts from the same model run, interpolated in space and time to 

match observed location. 

Clim T profile is used in the calculation of Psurf when AVN is not available. 

3.6 Emissivity First Guess 

The V4.0 PGE uses the Masuda emissivity over ocean. Over land the V4.0 PGE uses a 

regression formulation for the emissivity, which uses the first-pass cloud-cleared 

radiances as input. No first guess is used. 
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3.7 Microwave Tuning Coefficients 

The microwave brightness temperatures used in the L4.0 PGE are the antenna 

temperatures. These temperatures are empirically tuned to correct for sidelobes, RTA and 

other artifacts. The bias is a function of channel and scan angle and is derived from the 

analysis of obs-cal for ocean using ECMWF temperature and moisture profiles. The 

microwave tuning coefficients have no time, season, or latitude dependence. Details are 

discussed in section 5.4.13.3. 

3.8 IR Tuning Coefficients 

The infrared brightness temperatures used in the L4.0 PGE are empirically tuned to 

correct for RTA artifacts. The bias is a function of channel and is derived from the 

analysis of obs-calc for clear ocean spectra, using ECMWF temperature and moisture 

profiles.  There is no scan angle dependence. The IR tuning coefficients have no time, 

season, or latitude dependence. Details are discussed in section 5.4.13.2.2. 

3.9 File Format Reference 

The file formats and variable name definitions for all L1A, L1B and L2 products are 

given in “AIRS Version 4.0 Processing Files Description,” Version 1.1, August 2005, 

JPL D-31231. 
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4. THE FORWARD PROBLEM 

In the following, atmospheric radiative transfer or the ‘forward problem’ will be 

discussed.  The physical retrieval methodology utilized by the AIRS team depends on the 

ability to accurately and rapidly calculate the outgoing radiance based on the state of the 

surface and the atmosphere.  Sections 4.1 and 4.2 discuss the microwave and infrared 

radiative transfer and error estimates. Almost invariably, the statistical evaluation of 

calculated brightness temperatures, relative to those observed when the state of the 

atmosphere is reliably known, differs in the mean by a small, but significant amount, 

referred to as “bias.” This bias may itself be a function of other parameters, such as the 

scan angle. The process used for the derivation of this bias was described in Section 3.7 

for the microwave data and Section 3.8 for the IR data. The application of this bias in the 

retrieval process is described in Section 5.   

4.1 Radiative Transfer of the Atmosphere in the Microwave 

At the frequencies measured by AMSU and HSB, the most important absorbing gases in 

the atmosphere are oxygen and water vapor.  The oxygen molecule has only a magnetic 

dipole moment, and its lines are intrinsically much weaker than those which result from 

the electric dipole of water vapor; however, the much greater abundance of oxygen in the 

atmosphere more than compensates for this difference.  When clouds are present, liquid 

water also plays a role in radiative transfer.  However, fair-weather cirrus composed of 

ice particles small compared to the wavelength are generally transparent to AMSU-A and 

HSB frequencies. 

4.1.1 Oxygen 

O2 spin-rotation transitions comprise approximately 30 lines between 50 and 70 GHz and 

an isolated line at 118.75 GHz (which is not observed by AMSU or HSB).  Several 

groups have measured the pressure-broadened widths of the lines in the 50-70 GHz band.  

The line parameters used for the forward model are from the Millimeter-wave 

Propagation Model (MPM92) (Liebe, et al., 1992).  The characteristic of oxygen’s 

microwave spectrum that introduces difficulty for construction of models is the 

significant degree of line mixing. In MPM92, line mixing was treated by a first-order 
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expansion in pressure.  The coefficients for this expansion were determined by a 

constrained linear fit to laboratory measurements made on an O2 - N2 mixture over the 

frequency range of 49-67 GHz and the temperature range 279-327 K, with a noise level 

of approximately 0.06 dB/km.  Within that range, the model represents the measurements 

to ≤ 0.2 dB/km (see for example, Figure 4.1.1).  It is possible that extrapolation to colder 

temperatures introduces larger errors.  Measurements from the NASA ER-2 at 52-56 

GHz (Schwartz, 1997) seem to be in agreement with the model, however. 

 
Figure 4.1.1. Millimeter-wave Propagation Model Example 

 

4.1.2 Water Vapor 

Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal 

atmospheric humidity, and a much stronger, opaque line at 183.31 GHz.  Intensities of 

these lines have been calculated and tabulated by Poynter and Pickett (1996 version of 

JPL line catalog) and Rothman, et al., (1998) (HITRAN), among others.  The HITRAN 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 17 

intensities are used here.  For the 22-GHz line, the JPL intensity is higher than the 

HITRAN value by 0.3%.  There is a measurement by Liebe, et al., (1969) (estimated 

error 0.3%) which is 3.5% lower than the HITRAN value.  At 183 GHz, the JPL line 

intensity is 0.1% higher than HITRAN.  Widths have been measured by Liebe, et al., 

(1969) and Liebe and Dillon (1969) at 22 GHz with estimated uncertainty of 1% for both 

self and foreign-gas broadening; and by Bauer, et al., (1989) and Tretyakov, et al. (2003) 

at 183 GHz, with uncertainties of 0.5% for self-broadening and 1.0% for foreign-gas 

broadening, respectively.  However, Gamache, et al., (1994) concluded from a survey of 

measurements of many H2O lines that, in general, measured line widths should be 

considered to have uncertainties of 10-15%.  The line at 183 GHz is a case in which 

published measurements of width differ significantly, but the value of Tretyakov, et al., 

(2003), which is used here, lies near the centroid of the measurements. 

At frequencies away from these two lines, microwave absorption by water vapor is 

predominantly from the continuum, which is attributed to the low-frequency wing of the 

intense infrared and submillimeter rotational band lines.  In the microwave part of the 

spectrum, the foreign-broadened component of the continuum is stronger than the self-

broadened component, for atmospheric mixing ratios.  Measurements of continuum 

absorption as a function of temperature have been made at various frequencies by Liebe 

and Layton (1987), Godon, et al. (1992) and Bauer, et al. (1993, 1995).  There are also 

numerous measurements at single temperatures and frequencies in the laboratory, and in 

the atmosphere where temperature and mixing ratio are variable.  The measurements do 

not present an entirely consistent picture.  Rosenkranz (1998) proposed that the most 

satisfactory overall agreement with laboratory and atmospheric measurements of the 

water continuum was obtained with a combination of the foreign-broadened component 

from MPM87 (Liebe and Layton, 1987) with the self-broadened component from 

MPM93 (Liebe, et al., 1993).  The combined model is used here. 

4.1.3 Liquid Water 

It is useful to distinguish between precipitating and non-precipitating clouds with respect 

to their interactions with microwaves.  Over the range of wavelengths measured by 

AMSU and HSB, non-precipitating droplets (with diameters of 50 µm or less) can be 
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treated using the Rayleigh small-droplet approximation.  In this regime, absorption is 

proportional to the liquid water content of the air, and scattering can be neglected.  The 

model for the dielectric constant limits the accuracy of these calculations.  The double-

Debye model of Liebe, et al., (1991) is used here; for temperatures > 0 °C, it has an 

estimated maximum prediction error of 3% between 5 and 100 GHz, and 10% up to 1 

THz.  Although some measurements of static dielectric constant at temperatures as low as 

–20 C were used by Liebe, et al. to develop their model, its use for supercooled water 

must be considered to be an extrapolation, with uncertain accuracy.  (The model is 

implemented using the alternate eq. 2b in Liebe, et al.)   

Precipitation, on the other hand, requires Mie theory to calculate both absorption and 

scattering.  The latter is generally not negligible, and is the dominant term at some 

wavelengths.  In the case of convective storms, scattering from ice at high altitudes is 

often the most important process.  The rapid transmittance algorithm uses only the small-

droplet approximation for cloud liquid water, and scattering is not included.  For this 

reason, retrieved profiles with more than 0.5 kg/m2 cloud liquid water are rejected, as 

probably rain-contaminated. 

4.1.4 Rapid Transmittance Algorithm 

The physical retrieval algorithms used for AIRS/AMSU/HSB do radiative transfer 

calculations for each profile and hence need a computationally efficient transmittance 

algorithm.  The microwave algorithm computes an effective channel transmittance 

between two adjacent pressure levels as  

! P1,P2( ) = exp  " # +$%
V
+ &%

L
( )[ ],     (4.1.1) 

where ρV is the water vapor column density of the (P1, P2) layer, ρL is its liquid water 

column density, and the coefficients α, β, γ, are calculated for each layer and channel.  

They implicitly depend on temperature, pressure, and the angle of observation; β also 

depends implicitly on ρV.  For AMSU channel 14, α has a weak dependence on the local 

geomagnetic field.  The magnetic field is calculated by a fifth-order spherical-harmonic 

representation that has an accuracy of a few microteslas.  The coefficient α includes the 
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opacity due to O2 and a small contribution from pressure-induced absorption by N2.  

Parameterization of the coefficients uses approximations described by Rosenkranz (2003) 

for oxygen-band or window-type channels.  In the oxygen band, effective layer opacities 

are represented by a polynomial in temperature.  The opacity profile is computed on a set 

of fixed pressure levels and then linearly interpolated to the pressure levels of the 

retrieval, which can be variable (as is the case for the surface pressure).  Window-channel 

coefficients use analytic approximations for far-wing line and continuum absorption.  

Channels near the two water lines (AMSU channel 1 and HSB channels 3-5) use a 

Lorentzian-line calculation for the nearby line, with the contributions of other lines 

treated in the same way as for a window.  The local water-line parameters, the water 

continuum, and the liquid-water absorption are interpolated from a table as functions of 

temperature. 

The retrieval algorithm described in Section 5.2 also makes use of the derivatives dα/dt 

and dβ/dρV, which are computed in the rapid algorithm by appropriate analytic 

expressions corresponding to the local-line and continuum components. 

The transmittance of multiple layers is calculated by taking the product of the 

transmittances for each layer.  This transmittance is then used in the radiative transfer 

equation to compute brightness temperature: 

!TOA = !direct + "(0,PS) !S + !sky 1 #
!S

TS

$ 
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& 
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+ 
, 
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. 
/ 

    (4.1.2) 

where ΘTOA is the brightness temperature emitted from the top of the atmosphere, τ(0,PS) 

is the one-way transmittance of the atmosphere, 

!direct = T(P) < d"(0, P) >
0

PS

#
      (4.1.3) 

is the component of brightness temperature emitted from the atmosphere on a direct path 

to space, ΘS is the surface brightness (emissivity times temperature), 
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!sky = T(P) < d"(PS, P) > +!c < "(0,PS)
0

PS

# >

    (4.1.4) 

is the sky brightness temperature (including the attenuated cosmic contribution) as it 

would be observed from the surface, and TS is the physical surface temperature.  T(P) is 

atmospheric temperature at level P, PS is the surface pressure, and Θc is the cosmic 

background brightness temperature.  The form of (4.1.2) allows separation of the 

estimation of surface brightness from the estimation of temperature, as described in 

Section 5.1.1. 

 Θsky is computed for a zenith angle θref which, due to surface scattering, in general differs 

from the zenith angle θ for the direct path from surface to satellite.  When the surface is 

classified (see section 5.1.1.1) as either water or coastline, the ratio ρs = sec(θref)/sec(θ) is 

estimated as part of the retrieval solution, as described in section 5.1.1.3.  For all other 

surface types, surface scattering is assumed to be Lambertian, and is approximated by 

  sec(θref) = 1.55 - 0.16 ln( κ0 + 0.06)               (4.1.5) 

where κ0 = -ln(τzenith(0,PS))is the opacity of the atmosphere at zenith. 

Planck’s equation for radiant intensity is a nonlinear function of temperature.  For 

microwave frequencies, however, the physical temperatures encountered in the earth’s 

atmosphere lie at the high-temperature asymptote of this function.  Hence, as discussed 

by Janssen (1993), brightness temperature can be used as a surrogate for radiance in the 

equation of radiative transfer with an accuracy of a few hundredths of a Kelvin, provided 

that the cosmic background is assigned an effective brightness temperature at frequency 

!  of  

!
C
=
h"

2k
#
e
h" kTC

+ 1

e
h" kT

C $1      (4.1.6) 

instead of its actual temperature TC = 2.73 K, in order to linearize Planck’s function. 
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Figures 4.1.2 and 4.1.3 show the derivatives of transmittance with respect to a vertical 

coordinate which is the logarithm of integrated water vapor for the channels sensitive to 

moisture, and the logarithm of pressure (a surrogate for integrated oxygen content) for 

channels in the oxygen band.  These weighting functions indicate the atmospheric layers 

from which the thermal emission measured by each channel originates. 

 
Figure 4.1.2. Oxygen Band Weighting Functions for Unit Surface Emissivity 

 
Figure 4.1.3. Water Vapor Weighting Functions for Unit Surface Emissivity (left) 

and Vapor Burden vs. Pressure in Three Different Climatologies (right) 
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Figure 4.1.4. Brightness Temperature Errors (Rapid Algorithm Minus Line-by-Line 

Algorithm) for AMSU and HSB Channels. Vertical Lines Indicate ± 1 Standard 
Deviation; ε is the Surface Emissivity. 

The ability of the rapid algorithm to approximate a line-by-line calculation was tested on 

a set of 300 profiles from the TOVS Initial Guess Retrieval (TIGR) (Chedin, et al., 1985) 

ensemble.  The first 100 profiles from each of the tropical, mid-latitude, and polar groups 

were used.  Figure (4.1.4) shows brightness temperature errors (mean ± 1 standard 

deviation) at nadir, with surface emissivity = 0.7. For the channels that are not opaque (1-

5, 15-17, 19 and 20), these brightness temperature errors depend on surface emissivity. 

The value ε = 0.7 is typical of ocean at the highest frequencies, and intermediate between 

ocean and land at the lowest frequencies.  Errors for higher-emissivity land surfaces are 
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smaller than in Figure 4.1.4.  The errors for channel 14 include the consequences of the 

magnetic field approximation.  The output files contain a flag structure, MW_tair_range, 

which indicates whether the final temperature at any pressure level > 0.1 hPa lies outside 

of the range of profiles for which the rapid algorithm has been found to reproduce a line-

by-line calculation within the instrument sensitivity.  Different bits are set for 

temperatures outside the validated range by <10%, 10 to 25%, or >25%. 

4.1.5 Microwave Surface Brightness Model 

The surface brightness temperature spectrum ΘS is modeled by a six-parameter (T0 , T1 , 

T2 , ν1 , ν2 , s) curve, added to an a priori  surface brightness 

 ΘS (ν)  = ε0(ν) TS0  +  T0  +  T1 ν s / (ν s + ν1
s) +  T2 ν s / (ν s + ν2

s)  (4.1.7) 

where ε0(ν) is a preliminary estimate of emissivity for the surface type obtained from the 

classification algorithm described in section 5.1.1.1, and TS0 is the a priori 

(climatological) surface temperature.  The parameters T0 , T1 , T2 are used in the retrieval 

solution to adjust the spectrum (they have a priori values of zero), while ν1 , ν2 and s are 

assigned according to surface type, as in Table 5.1.1.  The last three terms in (4.1.7) also 

help to correct for effects such as ocean surface roughness, errors in the dielectric 

constant model, misclassification of the surface, or errors in the estimated land fraction 

within the footprint. 

In Figure 4.1.5, the rapid transmittance algorithm is tested against measurements made by 

the AMSU-A on the NOAA-15 satellite (see Rosenkranz, 2003) and the HSB on Aqua 

(see Rosenkranz and Barnet, 2006).  The calculated brightness temperatures are based on 

coincident radiosonde profiles, using window channels to infer the surface emissivity, as 

described in section 5.  Sidelobe corrections from Mo (1999) were applied to the AMSU-

A measurements in the figure, but no corrections were made to the HSB measurements. 
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Figure 4.1.5. Statistics of differences between measured brightness temperatures 
minus brightness temperatures calculated from radiosonde profiles. Three profile 
ensembles are shown for HSB. 
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4.2 Radiative Transfer of the Atmosphere in the Infrared 

Physical retrievals of atmospheric parameters attempt to minimize the difference between 

computed and observed channel radiances. The accuracy of the retrieval is therefore 

directly related to the accuracy of the computed radiances. AIRS measures the 

convolution of the up-welling monochromatic radiances with the instrument spectral 

response function (SRF). An exact calculation of the observed radiances therefore 

requires the convolution of simulated monochromatic radiances. These computed 

radiances are complicated functions of the atmospheric state (temperature, pressure, gas 

amount), the gas transmittances, and the AIRS SRFs. Since the atmospheric emission 

lines can have widths as small as ∼ 0.001 cm-1, the wavenumber grid scale for the 

radiance calculation must have a similar spacing. This small grid spacing, combined with 

the time- consuming SRF convolutions, makes a monochromatic calculation of radiances 

orders of magnitude too slow for practical use. Instead, we must use a fast radiative 

transfer model that is based on appropriately convolved atmospheric transmittances for 

each spectral channel. Then the radiative transfer can be performed on a per-channel 

basis rather than on a finely spaced monochromatic wavenumber grid. 

The starting point for understanding the AIRS radiative transfer algorithm (AIRS-RTA) 

is the monochromatic radiative transfer equation. The monochromatic radiance leaving 

the top of a nonscattering atmosphere is 

R(!,") = # s (!)B(!,Ts )$ (!, ps ,") + B(!,T )
ps

0

%
d$ (!, p,")

dp
dp

+&s (!)Hsun (!)$ (!, ps ,")$ (!, ps"sun )cos("sun ) + Rd

  (4.2.1) 

 

where B(υ, T) is the Planck function emission at frequency and temperature T, τ(υ, p, θ) 

is the transmittance between pressure p and the satellite at viewing angle θ, and Ts, εs, and 

ρs refer to the Earth’s surface temperature, emissivity, and reflectivity respectively. The 
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solar radiance incident at the top of the atmosphere is represented by Hsun, while Rd is a 

relatively small radiance contribution arising from the reflection of the downwelling 

atmospheric thermal emission 

 Rd (!) = 2"#s$ (!, ps ,%) B(!,T )
p=0

ps

& sin(%i )cos(%i )%i =0

"
2&

d$ d (!, p,%i )
dp

dpd% i         (4.2.2) 

where τd is the transmittance between pressure p and the surface. The dependence of 

temperature and angle on pressure (altitude) has been suppressed in the above equations, 

as well as the dependence of the transmittances on temperature and gas abundance. 

The AIRS-RTA allows the integration of the radiative transfer equation over 100 

atmospheric layers to be performed in a discrete form. For reasons of clarity and brevity 

we omit further discussion of the last two terms in Equation (4.2.1), except to note that 

they are included in the AIRS-RTA by simplified approximations. A discrete form of the 

radiative transfer equation can then be written conveniently as 

 Rmeas = R(!) f (! " !
0
)d! = (# sB(Ts )$ N + B(Ti )($ i"1 " $ i )) f (! " !

0
)d!

i=1

N

%&&       (4.2.3) 

where the atmospheric layers are numbered from space to the surface, 1 to N respectively. 

B(Ti) is the Planck emission for layer i at temperature Ti, τi is the transmittance from layer 

i to space, inclusive, and f(υ - υ0) is the AIRS SRF for the channel centered at υ0. The 

emissivity and Planck function are nearly constant over the narrow width Δυ of the AIRS 

channels, so they may be moved outside the integral. After integrating the transmittances, 

we are left with the channel-averaged form of the radiative transfer equation, 

 R
meas

= !
s
B(T

s
)"

N
+ B(T

i
)("

i#1
# "

i
)

i=1

N

$                                 (4.2.4) 

where all terms now represent appropriate channel-averaged quantities. 

The polychromatic approximation introduced in the above relation replaces the 

monochromatic layer-to-space transmittances with transmittances convolved with the 

SRFs. This in effect convolves the outgoing radiances, allowing us to do radiative 

transfer at just a single frequency per channel. In most cases, the AIRS channel radiances 
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calculated from the above equation using convolved layer-to-space transmittances differ 

from the convolved monochromatic AIRS channel radiances by ≤ 0.05 K, assuming one 

has perfect layer-to-space convolved transmittances in hand. 

Figure 4.2.1 illustrates the large difference in spectral resolution between the upwelling 

monochromatic radiation and an AIRS brightness temperature spectrum. Because of this 

large difference in spectral resolution one cannot derive the layer-to-space transmittances 

directly from the product of the convolved layer transmittances since Beer’s law is no 

longer valid. Overcoming this problem is one of the major issues in the development of a 

model for fast, parameterized, convolved layer transmittances. 

 

 
Figure 4.2.1. Simulated Monochromatic (Blue) and AIRS SRF Convolved (Red) 
Brightness Temperature Spectra.  The red circles indicate the actual AIRS channel 
centroids. 
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In the following sections we discuss the major issues in developing the AIRS-RTA, 

which include: (1) forming a discrete grid for integrating the radiative transfer equation, 

(2) parameterizing the layer transmittances as a function of the atmospheric state, (3) the 

spectroscopy needed to compute atmospheric transmittances, (4) the line-by-line 

algorithm used to generate the monochromatic transmittances (5) the AIRS spectral 

response functions. 

The flowchart shown in Figure 4.2.2 outlines the flow of activities needed to develop the 

AIRS-RTA, which is discussed in the following text. 

 

 
Figure 4.2.2. Flow Diagram for Development of the AIRS-RTA 
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4.2.1 AIRS Atmospheric Layering Grid 

The atmospheric pressure layering grid for the AIRS-RTA model was selected to keep 

radiative transfer errors below the instrument noise. Grid characteristics are a function of 

the spectral region(s) of observation, the instrument resolution, and instrument noise. The 

speed of the final fast transmittance model will depend on the number of layers, so 

excessive layering should be avoided. 

Line-by-line simulations indicate some channels need a top layer with pressures as small 

as 0.01 mb (an altitude of ∼ 80 km). The region of primary importance to AIRS is the 

troposphere and lower stratosphere, where layers on the order of 1/3 of the nominal 1-km 

vertical resolution of AIRS retrievals are desired. Smoothly varying layers facilitate 

interpolation and avoid large changes in layer effective transmittances. The following 

relation defines the pressure layer boundaries selected for AIRS 

 P
i
= (ai

2
+ bi + c)

7 2                                          (4.2.5) 

where P is the pressure in millibars; i is the layer boundary index and ranges from 1 to 

101; and the parameters a, b, and c were determined by solving this equation with the 

following fixed values: P1 = 1100 mb, P38 = 300 mb, and P101 = 0.005 mb. The 101 

pressure layer boundaries in turn define the 100 AIRS layers. These layers vary smoothly 

in thickness from several tenths of a kilometer near the surface to several kilometers at 

the highest altitudes. Figure 4.2.3 is a plot of the layer mean pressure for the 100 AIRS 

layers. 

4.2.2 Fast Transmittance Modeling 

Over the years, a number of fast transmittance models have been developed for various 

satellite instruments. However, some of these models only have been applied to the 

microwave region where the measured radiances are essentially monochromatic and 

easier to model. AIRS required a major new effort in the development of its RTA. Some 

of the details of our model can be found in Strow, et al., (2003). 

The AIRS-RTA most closely follows Susskind, et al., (1983) by parameterizing the 

optical depths rather than transmittances for channels where the influence of water vapor 
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is small. Channels sensitive to water vapor are modeled using a variant of the Optical 

Path TRANsmittance (OPTRAN) algorithm developed by McMillin, et al., (1979, 1995). 

The AIRS infrared fast model is thus a hybrid of both Susskind’s approach and 

OPTRAN. 

 
Figure 4.2.3. Mean Pressure of the AIRS-RTA 100 Layers 

The AIRS-RTA model actually produces equivalent channel averaged optical depths, k, 

which are related to the layer transmittances, τ, by τ = exp(-k). The optical depth is the 

product of the absorption coefficient and the optical path. For AIRS, a fast model for k is 

much more accurate than a model that directly returns layer τ.  k is computed for each of 

the 100 atmospheric layers used for AIRS radiative transfer. The current AIRS-RTA 

model allows water, ozone, methane, carbon monoxide, carbon dioxide, the temperature, 

and local scan angle to vary.  All other gases are treated as “fixed” gases. These gases are 

“fixed” in the sense that we only need to parameterize their dependence on temperature, 

not amount. Although the observed radiances are primarily sensitive to temperature via 

the Planck function, the temperature dependence of the transmittances is also important. 
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The following discussion outlines the development of a parameterization of the 

convolved layer transmittances as a function of the atmospheric state. Most of the 

complications of this parameterization arise from the loss of Beer’s law, which forces us 

to introduce terms in the transmittance parameterization for a given atmospheric layer 

that depend on layers above the particular layer under consideration. These 

parameterizations, which are functions of the atmospheric profile, are derived from least-

squares fits to a statistical set of atmospheric profiles in order to ensure that we can 

faithfully produce the appropriate transmittances under all atmospheric conditions. We 

call this statistical set of profiles our “regression profiles.” 

Breakout of Gases  Once the atmospheric layering grid and regression profiles (see later 

discussion) are selected, the monochromatic layer-to-space transmittance can be 

calculated. The gases are distributed into sub-groups that are either fixed or variable. The 

details of how the transmittance model simultaneously handles several variable gases is 

somewhat complicated and beyond the scope of this document. For simplicity, this 

discussion is restricted to fixed gases (F), water vapor (W), and ozone (O). The breakout 

of the other variable gases is similar. The monochromatic layer-to-space transmittances 

for the 48 regression profiles are calculated for each pressure layer, grouped into the 

following three sets, and convolved with the AIRS SRF 

 
Fl = ! l ( fixed)

FOl = ! l ( fixed + ozone)

FOWl = ! l ( fixed + ozone + water)

                               (4.2.6) 

Water continuum absorption is excluded since it varies slowly with wavenumber and 

does not need to be convolved with the AIRS SRF.  In addition, separating out the water 

continuum improves our fit of the local line water transmittance. Later, the water 

continuum is factored into the total transmittance as a separate term. 

For each layer l, the convolved layer-to-space transmittances are ratioed with 

transmittances in the layer above, l − 1, to form effective layer transmittances for fixed 

(F), water (W), and ozone (O) as 
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Fl
eff

=
Fl

Fl!1

Ol

eff
=

FOl

FOl!1

÷
Fl

Fl!1

Wl

eff
=

FOWl

FOWl!1

÷
FOl

FOl!1

                                  (4.2.7) 

Forming these ratios in the above manner reduce the errors inherent in separating the gas 

transmittances after the convolution with the instrument spectral response function. The 

total effective layer transmittance can be recovered as 

 FOWl

eff
= Fl

eff
!Ol

eff
!Wl

eff
=

FOWl

FOWl"1

                           (4.2.8) 

The convolution of a product of terms is in general not the same as the product of the 

terms convolved individually. However, the above formulation guarantees the product of 

all the layer transmittances from layer l to N exactly returns FOWl, if the layer 

transmittances are exact. 

The zeroth layer transmittance (i.e., when l − 1 = 0) is taken to be exactly 1.0. The 

negative logarithm of these layer effective transmittances is taken to get effective layer 

optical depths 

 

k fixed = ! ln(F
eff
)

kozone = ! ln(O
eff
)

kwater = ! ln(W
eff
)

                                           (4.2.9) 

which become the dependent variables in the fast model regression. 

Predictors  The independent variables in the fast model regression, called the predictors, 

are a set of variables relating to the atmospheric profile. The optimal set of predictors 

used to parameterize the effective layer optical depth depends upon the gas, the 

instrument SRFs, the range of viewing angles, the spectral region, and even the layer 

thicknesses. In short, no one set of predictors is likely to work well in every case. Finding 

the set of predictors which give the best results is, in part, a matter of trial and error.  

However, there are some general trends. 
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For an instrument such as AIRS with thousands of channels, it is difficult to develop 

individual optimal predictors for each channel. The AIRS-RTA uses seven sets of 

predictors, each corresponding with a subset of channels. These sets of predictors were 

determined by extensive trial and error testing, as well as consideration of the relative 

importance of the variable gases in each channel. Supplemental sets of predictors are 

used for OPTRAN water, the water continuum, and variable CO2. 

The regression is prone to numerical instabilities if the values of the predictors vary too 

greatly.  Consequently, we follow the usual practice of defining the predictors with 

respect to the values of a reference profile, either by taking a ratio or an offset. There is 

also a danger of numerical instability in the results of the regression, due to the 

interaction of some of the predictors.  Sensitivity of the output to small perturbations in 

the predictors is avoided by systematic testing, but there are practical difficulties in 

detecting small problems since we are performing on the order of 1 million regressions. 

As an example, the predictors for the fixed gases for one of the seven sets are 

1)a   2)a2   3)aTr   4)aT
r

2    5)Tr   6)T
r

2    7)aTz   8)aTz/Tr                (4.2.10) 

where a is the secant of the local path angle, Tr is the temperature ratio Tprofile/Treference, and 

Tz is the pressure weighted temperature ratio above the layer 

 T
z
(l) = P(i)P(i)

i=2

l

! " P(i "1)T
r
(i "1)                               (4.2.11) 

where P(i) is the average layer pressure for layer i. The predictors for the variable gases 

can involve more complicated dependencies on the gas and the pressure weighted gas 

ratios above the layer, similar to the temperature term defined above. Note that terms like 

Tz (or Wz, etc. for the variable gases) make the layer l transmittance dependent on the 

temperature (or gas amounts) in the layers above l. 

Regressions for Fast Transmittance Parameters The accuracy of radiative transfer 

calculations made with the AIRS-RTA model was improved significantly by weighting 

the variables prior to performing the regression. Radiative transfer is insensitive to layers 

for which the change in layer-to-space transmittance across the layer is approximately 
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zero. This occurs when either the layer effective transmittance is approximately unity, or 

the layer- to-space transmittance is approximately zero. Therefore, the data going into the 

regression is not all of equal importance to the final accuracy of radiative transfer 

calculations made with the model. We found it useful to weight the data in terms of both 

its effective layer optical depth as well as the total optical depth of all the layers above 

the layer under consideration. 

The spectral dependence of the fitting errors are shown in Figure 4.2.4 and a histogram of 

these errors in Figure 4.2.5. The errors are calculated with respect to the regression 

profile set, comparing the RMS errors between the brightness temperatures of input data 

and the AIRS-RTA model calculated values. These graphs including errors from all six 

angles used for regression profiles. They do not include errors associated with the 

parameterization of the reflected thermal and reflected solar radiation. 

During the development of the AIRS-RTA, the RMS errors were computed for a large 

independent set of profiles. The RMS errors for the independent profiles were generally 

similar to those for the regression profiles. The regression profiles represent a wide range 

of possible conditions, with a number of extreme cases. It is important to recognize, 

however, that the AIRS-RTA does have a statistical component that comes from the 

selection of the regression profiles. 

Regression Profiles  One other necessary pre-processing step is the selection of a set of 

profiles for calculation of the layer-to-space transmittances. The transmittances for these 

profiles become the regression data for the fast transmittance coefficients. These profiles 

should span the range of atmospheric variation, but, on the whole, should be weighted 

towards the more typical cases. The range of variation provides the regression with data 

points covering the range of possible atmospheric behavior, while the weighting of the 

mix of profiles towards more typical cases produces a transmittance model that works 

best on more statistically common profiles. 

The process of calculating and convolving monochromatic layer-to-space transmittances 

is generally computationally intensive, thus imposing a practical limit on the number of 

profiles one can calculate for use in the regression. As discussed earlier, 48 regression 
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profiles (at 6 viewing angles each) are sufficient to cover most of the profile behavior. 

This number is a compromise between the available time and computing resources and 

the need to cover a wide range of profile behavior in the regression. Choosing too few 

profiles leads to accuracy problems for profiles outside the range of behaviors 

considered.  Choosing more profiles than necessary does not hurt the fast model, but does 

consume extra time and computer resources. 

 
Figure 4.2.4. RMS Errors of the AIRS-RTA Model 

Each profile should cover the necessary pressure (altitude) range with data for 

temperature as well as absorber amount for each of the gases allowed to vary. The fixed 

gases include all whose spatial and temporal concentration variations have a negligible 

impact on the observed radiances. As previously mentioned, the variable gases are H2O, 

O3, CO, CH4, and CO2. All other gases are included in the “fixed gases.”  CO2 is handled 

differently than the other variable gases, and only two CO2 absorber amount profiles are 

used: a standard amount profile and a perturbed amount profile. The standard amount 
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CO2 profile is treated as a fixed gas. A very simple and accurate parameterization is used 

to model the difference in transmittance between the standard CO2 profile transmittances 

and the perturbed CO2 profile transmittances. 

For those satellite-viewing angles relevant to the AIRS instrument (0 to 49 degrees), the 

effects of viewing angle can be approximated fairly well by multiplying the nadir optical 

depth by the secant of the local path angle. This approximation neglects the minor 

refractive effect at large angles. Due to the curvature of the Earth, the local path angle is 

in general not the same as the satellite viewing angle, but is related to it by a fairly simple 

equation. Local atmospheric path angles of 0, 32, 45, 53, 60, and 63 degrees are used in 

the regression profiles to cover the 0-49 degree satellite view angle range. An additional 

six angles between 69-84 degrees are used for the shortwave channels where 

transmittances at large angles are need to model the reflected solar radiance. 

 
Figure 4.2.5. Histogram of the AIRS-RTA Model, Fitting Errors for All Channels 
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4.2.3 Spectroscopy 

The ultimate goal is to produce an AIRS-RTA that does not introduce significant errors in 

AIRS computed radiances. This requires a fast model that can compute accurate 

transmittances.  Even if the fast model RMS fitting errors are zero, the accuracy of the 

transmittances are dependent upon the quality of the spectroscopic line parameters and 

lineshape models used to compute the monochromatic transmittances. 

Due to the dominance of either CO2 or H2O absorption in the majority of AIRS channels, 

the most important spectroscopy errors are associated with errors in the line parameters 

and line shapes of these two gases. The line parameters most likely to introduce 

spectroscopy errors into the fast forward model for AIRS are the line strengths, line 

widths, and the temperature dependence of the line widths. However, errors in spectral 

lineshapes and continuum absorption probably are generally more troublesome than line 

parameter errors. 

Currently, the HITRAN-2000 (Rothman, et al., 2003) database is used for most 

atmospheric line parameters. As so many bands and molecules contribute to the observed 

radiances, the accuracy of the existing line parameters is difficult to judge in detail. Based 

upon our analysis of AIRS observations and calcuated radiances, we estimate the 

combined effects of line parameter and lineshape model errors in the computed optical 

depth of the stronger absorbing “fixed” gases (which in most spectral regions is 

dominated by CO2) are typically at the 5% level, while for water the optical depth errors 

are at the 10% level. 

Errors in the spectral line shapes of CO2 and H2O are much more problematic than line 

parameter errors. Because of the large optical depths of CO2 and H2O in the atmosphere, 

their spectral line wings can be important, especially for remote sensing of temperature 

and humidity. For example, AIRS channels with the sharpest weighting functions are 

located in between lines or in the line wings where knowledge of the spectral line shape 

is most important. Moreover, accurate measurements of the line wing absorption are 

exceedingly difficult due to problems simulating atmospheric optical depths in a 
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laboratory cell, especially for H2O. It is also tedious and expensive to make these large 

optical depth measurements at the low temperatures found in the upper troposphere. 

Figure 4.2.6 shows the optical depth “tuning” used with the AIRS-RTA in version 4 

processing. These multipliers are used to scale the indicated component of the optical 

depth inside the AIRS-RTA. These are empirically determined values, and some small 

portion of these adjustment may be due to error sources other than spectroscopy. Tracing 

these adjustments back to line parameter errors is no simple task and has not yet been 

attempted. 

Figure 4.2.7 shows the effects of our optical depth tuning on AIRS radiances. The data 

set consists of the clearest night-time AIRS observations matched with sondes launched 

as part of the AIRS validation campaign. The sonde profiles were used with the AIRS-

RTA to compute simulated radiances, which were then differenced with the observations. 

The sonde data did not extend to the stratosphere, so ignore the bias in the 15-μm and 

4.3-μm stratospheric channels. We solved for an effective surface skin temperature using 

the AIRS super-window channel at 2616 cm−1, so the bias there has been forced to zero. 

4.2.4 Monochromatic Transmittance Calculations 

The monochromatic layer-to-space transmittances used to determine the parameters of 

the AIRS-RTA model are indirectly generated using our custom line-by-line code 

(UMBC-LBL). Building a custom LBL code allowed us to incorporate those features we 

deemed desireable, include our Q-, P-, and R-branch CO2 line-mixing model which has a 

significant effect on the optical depths in the 15-μm and 4-μm regions. 

Currently, 48 profiles are used in the regressions for the fast transmittance parameters. 

Because line-by-line (and especially Q/P/R branch line mixing) calculations are very 

slow, we developed a new pseudo line-by-line algorithm called the kCompressed 

Atmospheric Radiative Transfer Algorithm (kCARTA) to allow the (relatively) fast 

computation of almost monochromatic transmittances and radiances. The UMBC-LBL 

was used to compute a very large look-up table of monochromatic layer optical depths for 

a set of 11 reference atmospheric profiles. The kCARTA program interpolates the lookup 
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table optical depths for temperature and scales for absorber amount to compute the 

optical depths for the desired profile.  Any change in the physics of the line-by-line code 

or line parameter database requires a recalculation of the affected portion of the look-up 

table. 

The kCARTA database consists of many individual look-up tables each covering a  25-

cm-1 interval with 10,000 points (0.0025-cm-1spacing) for 100 pressure layers (0.009492 

to 1085 mb) and 11 temperatures. The 11 temperature profiles are the U.S. Standard 

profile, and 10 profiles offset from it in ± 10 K increments. On average, 7 gases must be 

included per 25-cm-1 region. The continua due to gases such as N2 and O2 are also 

included in these tables. Optical depths are computed using a 0.0005 cm-1grid and then 

averaged to the database grid spacing of 0.0025 cm-1.  

 

Figure 4.2.6. Optical Depth Tuning used in the V4 AIRS-RTA.  The bottom panel 
shows the same data as the top panel, but with the vertical range expanded to 
illustrate the large adjustment to the water continuum in the shortwave channels. 
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Consequently, the highest altitude optical depths are not truly monochromatic, but exhibit 

good integrated optical depths. The relatively large width of the AIRS Spectral Response 

Function (SRF) results in negligible errors due to this averaging. 

This large look-up table has been compressed using a Singular Value Decomposition 

(SVD) method.  The approximately 50 times compression achieved in kCARTA is lossy, 

but the accuracy of the transmittances remains very high.  kCARTA bridges the gap 

between slow but accurate line-by-line codes, and fast but special purpose fast 

transmittance codes.  kCARTA is used to calculate the 48 profile transmittances we use 

as regression data for the AIRS fast transmittance model. The computation time for these 

transmittances is not a significant fraction of the time involved in creation of a new 

fastmodel.  However, the transmittance data files are very large, and the convolution of 

these monochromatic transmittances with the AIRS SRFs is a time consuming process. 

 

 
Figure 4.2.7. Comparison of Observed - Calculated Brightness Temperatures with 

and without Optical Depth Tuning 
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4.2.5 Spectral Response Function Measurements and Modeling 

Inaccuracies in the AIRS spectral response function directly impact the accuracy of the 

AIRS-RTA, and consequently the accuracy of the AIRS retrieved products. The AIRS 

SRFs are not Level 1 products, so it is appropriate to discuss the determination of the 

SRF functions in this document.  Complete knowledge of the AIRS SRFs derived solely 

from ground calibration was not possible for two reasons; (1) small changes in the 

alignment of the AIRS spectrometer/focal plane since launch have shifted the centroids of 

the AIRS SRFs, and (2) the spectral location of fringes produced by the AIRS entrance 

aperture filters are dependent on the thermal environment of AIRS in orbit.  Both of these 

effects are relatively small, but our requirements on SRF knowledge are quite stringent. 

Since becoming operational in late August 2002, the AIRS channel centroids have 

remained stable to within 1% of a channel Full Width at Half Maximum (FWHM). An 

extreme solar event in late October 2003 led mission control to shut off the AIRS coolers 

temporarily. When AIRS was switched back on in early November 2003, it required a 

few weeks to cool down, and then be re-calibrated back to approximately the same 

configuration as before the shutdown. While it was possible to adjust the channels back 

to their pre-shutdown centroids, this required a small change to the operating 

temperature, which resulted in a small relative shift of the fringes. The effects of this shift 

are small enough to ignore for retrieval purposes, but may need to be accounted for when 

looking at radiance biases for climate purposes. 

Figure 4.2.8 shows the estimated change to the AIRS observed brightness temperatures 

due to the change in fringe position in November 2003. The effects are negligible in most 

channels, but not everywhere. The largest change is in 2200-cm-1 region which affects the 

CO sounding channels. The inset plot shows a blowup of this region, and the good 

agreement between the model and observed change is evidence the fringe and SRF 

models are fairly accurate. 

While we can not measure the SRFs in orbit, we can measure the channel centroids to 

fairly high accuracy.  Careful analysis of AIRS data indicates the channel centroids drift 
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back and forth by 0.5% of a FWHM (peak-to-peak) over each orbit. The exact reason for 

this drift is uncertain, but it is probably related to solar heating effects. There is also a 

long term drift, with the channels having drifted 0.3% of a FWHM in the first two years 

since launch.  This slow drift appears to be slowing and it may not be necessary to take 

action to maintain the current channel centroids.  If it is eventually deemed necessary, it 

should be possible to again “dial in” the original channel centroids by adjusting the 

temperature of the focal plane, but this would again cause another relative shift in the 

fringe positions. 

 

Figure 4.2.8. Estimated Change to AIRS Observed Brightness Temperatures due to 
the Offset in Fringe Position in November 2003 

Figure 4.2.9 shows the drift in the AIRS channel centroids as a function of time as well as 

latitude during the ascending (day-time) portion of Aqua’s orbit.  The back-and-forth 

shift of the centroids with each orbit shows up in this plot as the latitude dependence of 

the shift.  The data used for this plot does not extend to high latitudes, so the full range of 
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the shift with latitude is not shown.  The Version 4 AIRS-RTA and Level 1B data does 

not account for this small orbital and long-term centroid drift.  The effects of a 0.5% error 

in the channel centroids is shown in Figure 4.2.10.  It is possible to apply an approximate 

correction for a small centroid error by interpolating the forward model radiances, but 

that requires knowledge of the centroid position. 

 

Figure 4.2.9. Centroid Drift versus Time and Latitude, Ascending (Day) Orbit 
 

4.2.6 AIRS-RTA Error Analysis 

The following table contains rough estimates of the errors in the AIRS-RTA in units of 

brightness temperature. They are separated into radiative transfer/spectroscopy errors and 

SRF knowledge errors.  In many cases these errors will be correlated, sometimes of 

opposite sign.  Consequently it is very difficult to properly combine the errors in Table 

4.2.1 into a single AIRS-RTA error budget. In addition, most of these errors are highly 

channel dependent. They have been estimated conservatively and represent upper bounds. 
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Figure 4.2.10. Brightness Temperature Error for a 0.5% Error in Channel 

Centroids 
 

Table 4.2.1. AIRS-RTA Error Estimates 

Radiative Errors Error (K) Comment 
Fast model fit 0.05 - 0.3 Can be larger for individual profiles 
Spectroscopy 0.2 - 0.6 Errors are more likely for water 
Reflected thermal 0.0 - 0.2 Proportional to reflectivity 
Solar 0.0 - 0.1 Can be much larger if ρ is off 
Layering 0.05 Most channel have lower errors 
Polychromatic approximation 0.05 Most channel have lower errors 
Aerosols 0.0 - 1 Dust can make it through cloud clearing 
   
SRF Errors   
Centroids 0.0 - 0.1 Possible to corrected for 
Widths 0.0 - 0.2 Negligible for most channels 
Fringes 0.0 - 0.2 Negligible for most channels 
Wings 0.0 - 0.2 Negligible for most channels  
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5. DESCRIPTION OF THE CORE RETRIEVAL 
ALGORITHM 

5.1 Microwave Initial Guess Algorithms 
5.1.1 Profile Retrieval Algorithm 

The microwave initial guess profile retrieval algorithm derives temperature, water vapor 

and non-precipitating cloud liquid water profiles from AMSU-A/HSB brightness 

temperatures.  It is intended to provide the starting point for the AIRS cloud clearing and 

retrieval. This is an iterative algorithm in which the profile increments are obtained by 

the minimum-variance method, using weighting functions computed for the current 

temperature and moisture profiles with the rapid transmittance algorithm described in 

Section 4.1. A block diagram is shown in Figure 5.1.1. 

The input vector of measured brightness temperatures is accompanied by an input 

validity vector whose elements are either one or zero.  This provides a way of handling 

missing or bad data (for example, during the period after HSB failed on Feb. 5, 2003). 

5.1.1.1 Preliminary Surface Type Classification 

The surface classification algorithm is diagrammed in Figure 5.1.2.  The classification 

rules are from Grody, et al., (2000), and make use of discriminant functions that are 

linear combinations of AMSU-A channels 1, 2, 3, and 15.  If sea ice is indicated by the 

classification algorithm, then its concentration fraction is estimated from a linear 

operation on channels 1, 2, and 3.  If the surface type is glacier or snow-covered land, 

then the snow or ice fraction is estimated using AMSU-A channels 3 and 15.  Parameters 

of the surface brightness model (Equation 4.1.7) are assigned according to surface type as 

in Table 5.1.1.  A priori emissivities for the ice and snow types were estimated from 

NOAA-15 and Aqua data.  For land, ε0(ν) = 0.95 at all frequencies; for seawater, the 

dielectric constant model of Ellison, et al., (2003) was used to compute the emissivity of 

a flat surface viewed in the polarization of the AMSU-A and HSB radiometers. 
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AMSU Footprint with HSB Spots

END OF MW-ONLY RETRIEVAL

INITIALIZE
Initialize Profiles to Climatology

SAVE RETRIEVED PROFILES
Fill Ice Flag Array

If the return value is not zero, zero out liquid water profile

BFIELD
Calculate B-field to correct Ch 14 Transmittance 

SURFACE
Determine Surface Type and a priori  Surface Brightness 

Temperatures using window channels

HUMIDITY
Estimate Water Vapor and Liquid Water Profiles and adjust Surface 

Brightness Temperatures using AMSU and HSB Radiances

TEST FOR ERROR

T, WATER 
Converged?

TEMPERATURE
If Not Yet Converged, Estimate Temperature Profile 

using AMSU Radiances

TEST FOR ERROR

T Converged?

set ierr

ERROR
or no Water Convergence

by final iteration

NO

BOTH CONVERGED

YES

ITERATE, No Tsurf Update
(T Profile already Converged)

NO

ITERATE, Update Surface Temperature
(T Profile not yet converged)

ERROR
or no T Convergence

by final iteration

 

Figure 5.1.1. AMSU-A/HSB Initial Guess Profile Retrieval 
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Figure 5.1.2. Surface Classification Algorithm 
5.1.1.2 Atmospheric Moisture and Condensation Model 
Measurements of brightness temperature at the HSB frequencies are a result of the 

vertical profile of atmospheric opacity relative to temperature and hence do not by 

themselves distinguish, at any given altitude, between opacity due to water vapor and 

opacity due to liquid water.  However, the physics of water vapor condensation add some 

a priori  information or constraints.  Wilheit (1990) suggested that liquid water should be 

placed at the altitudes where the measurements force relative humidity into saturation.  

Although the water vapor profile is saturated within the cloudy part of the field of view, it 
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is assumed here that the condensation process is not spatially resolved, hence the 

threshold for condensation, denoted by HL, may be less than 100%.  The saturation vapor 

pressure depends on temperature, and due to errors in the estimated temperature profile, 

HL may also be greater than 100%. Therefore, HL is retrieved as an atmospheric 

parameter, along with a profile H, which is a generalization of relative humidity to 

encompass both vapor and liquid water, as illustrated in Figure 5.1.3.  It is important to 

note that because convergence is determined from the brightness temperature residuals, 

which, in turn, are computed using the vapor and liquid mixing ratios (or column 

densities), the role of H in this algorithm is only to introduce the a priori statistics and 

constraints. 

The average vapor mixing ratio in the field of view is  

                             ρV = ρS [ ramp( H, 10 ) - f(H) ] / 100    (5.1.1) 

where ρS  is the saturation value of mixing ratio, 

                      {  x   for x! c; 
  ramp(x,c)  = {         (5.1.2) 
                      {  c exp(x/c - 1)  for x < c, 
 
and 

              f(H) =  ramp( H - HL, 6 )      (5.1.3) 

Thus, the value of ρV /ρS lies between zero and HL/100.  The liquid water mixing ratio 

averaged over the field of view is assumed to be given by 

                                           ρL = c1 f(H)      (5.1.4) 

where c1 is a coefficient equivalent to a liquid/air mass mixing ratio of 10-5 per percent. 

The saturation vapor mixing ratio is computed from the temperature profile by the 

formula of Liebe (1981).  Saturation is calculated with respect to liquid water (by 

extrapolation) even when the temperature is below 273 K.  This model therefore allows 

supercooled liquid water and water vapor greater than the saturation value with respect to 

ice. 
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Table 5.1.1. Surface-Model Parameters Fixed by Classification. (σ0, 1, 2, ρ,  HL = a 
priori standard deviation of T0, T1, T2, pρ, HL) 

Surface type s ν1 (GHz) ν2 (GHz) σ0 (K) σ1 (K) σ2 (K) σρ  σHL(%) 
0. Coastline 1.2 90  - note 1 note 1 0 0.12 8 
1. Land 1.2 90  - 15 20 0 0 8 
2. Water 1.5 50  - note 1 note 1 0 0.12 8 
3. High-emissivity sea ice 3 40 120 10 10 10 0 0 
4. Low-emissivity sea ice 3 40 120 10 10 10 0 0 
5. Snow (high-frequency 
scattering) 

3 50 150 20 20 20 0 0 

6. Glacier/snow (very low-
frequency scattering) 

3 40 120 20 20 20 0 0 

7. Snow (low-frequency 
scattering) 

3 33  90 20 20 20 0 0 

 
Note 1: For water or coastline, σ0

2 = 25 + (0.55 Ts σLF)2  and σ1
2 = 100 + (0.25 Ts σLF)2, 

where σLF is the estimated uncertainty in the land fraction. 
 

 

Figure 5.1.3. Water Vapor(ρv) and Cloud Liquid (ρL) Mixing Ratios as Functions of 
HL  = 100. The Arrows Indicate How the curves Change as HL Varies 
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5.1.1.3 Estimation of Surface Brightness and Atmospheric Moisture 

This part of the algorithm is based on retrieval methods described by Wilheit (1990), 

Kuo, et al., (1994), Wilheit and Hutchison (1997), and Rosenkranz (2006).  It uses the 

four channels of HSB and channels 1, 2, 3 and 15 of AMSU-A.  The HSB measurements 

are weighted averages over 3x3 spatial arrays which approximate the AMSU-A field of 

view.  The H profile, HL, and four surface parameters T0, T1, T2, and pρ are concatenated 

into a vector   
! 
Y .  The parameter pρ, when the surface type is either water or coastline, 

determines the secant ratio ρ by 

 ρ  =  sec(θref)/sec(θ)  =  1 + ramp(pρ, 0.02)      (5.1.5) 

The cost function to be minimized is  

 (Yest-Yo)T SY
-1 (Yest-Yo) + (Θobs-Θ -Θ’)T (Se+Sf)-1 (Θobs-Θ -Θ’)  (5.1.6) 

in which Yest is the estimate of Y, Yo is its a priori value and SY is its covariance matrix 

with respect to Yo, Θobs is a vector of the eight measured antenna temperatures, Se is their 

error covariance matrix (assumed to be diagonal), Θ’is the tuning correction for sidelobe 

effects and possible transmittance error, and Θ  is a brightness temperature vector 

computed from the current values of temperature, moisture, and surface brightness. Sf is a 

diagonal covariance matrix which approximately represents errors in Θ resulting from 

errors in the temperature profile retrieval and tuning. 

The estimate of Y is obtained by Newtonian iteration (see Rodgers, 1976), except that 

Eyre’s (1989) method of damping is used to avoid large relative humidity increments, 

because of the nonlinearity of the problem: 

Yestn   = Yestn-1 - δ [ Yestn-1 - Yo ] + δ SY WY
T XY  (5.1.7)  

in which (WY)ij = ∂Θi/∂Yj, superscript T indicates transpose, and XY is the solution vector 

to 

[WY δ SY WY
T + Se + Sf ] XY  = Θobs- Θ - Θ’+ WY δ [ Yestn-1 - Yo ]  (5.1.8)  

where 
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    { 1.0 if (Θiobs- Θi - Θ’) < 10 K for all channels i, or n !  10; 
 δ  = { (5.1.9) 

    { 0.1 otherwise. 

Here !  is a scalar rather than a matrix as in Eyre’s paper.  The Jacobian matrix WY is 

computed for the state represented as Yestn-1 by application of the chain rule for 

differentiation to the forward model equations.  This is sometimes referred to as a 

“tangent linear” method.  For example, the elements of WY corresponding to H values are 

!"
!H

= G •
!#
!$

v

•
!$

v

!H
+ %

!$
L

!H
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( 
) 

* 

+ 

   (5.1.10) 

in which G = !" !#  where !  represents the opacity of the layer at the viewing angle, 

and ! = "# "$L .  G is equal to the integral over an atmospheric layer of the function 

G(h) for which an expression is given by Schaerer and Wilheit (1979).  The rapid 

transmittance algorithm computes the coefficient γ in the small-droplet (Rayleigh) 

approximation.  Hence, it is intended to be applied only to non-precipitating cloud 

situations. Differentiation of (5.1.1) and (5.1.4) yields 
!"v

!H  and 
!"L

!H . 

The elements of SY corresponding to relative humidity were calculated from the TIGR 

profile ensemble (Chedin, et al., 1985).  For the surface, it is necessary to postulate 

statistics based on physical plausibility and observed ranges of variation.  The standard 

deviations of parameters depend on surface type, and are listed in Table 5.1.1.  The a 

priori relative humidity is obtained from climatological databases (NCEP 50-year 

reanalysis, Kistler, et al., 2001) of temperature and vapor mixing ratio, but limited to < 

90%.  Hence the initial cloud liquid-water profile always has very small values.  The a 

priori values of T0, T1 and T2 are set to zero, and HL to 100, in all cases; the a priori value 

of pρ is assumed to be 0.02. For water surfaces, the parameters T0, T1, and pρ are all 

related to roughness, and therefore the a priori statistics assigned to them assume 

correlation coefficients of 0.2.  As indicated by the standard deviations in Table 5.1.1, at 

most three of the four surface-roughness parameters are allowed to vary for any surface 

type. 
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After update of Y by (5.1.7-8), the water vapor and liquid water profiles are computed 

from (5.1.1-4), and surface brightness is computed for both window and sounding 

frequencies from (4.1.7), using the new estimate. 

5.1.1.4 Estimation of Temperature Profile 

The atmospheric temperature vector is augmented by TS, which is considered to be 

distinct from the air temperature near the surface.  The measured Θ's used in the 

temperature profile retrieval are channels 4-14 of AMSU-A.  Given an existing estimate 

Testn-1, the new estimated profile is to be determined from a vector Θobs of observed 

brightness temperatures.  A cost function similar to (5.1.6), with Y replaced by T, is to be 

minimized separately for the temperature profile.  Hence, the retrieved profiles are not 

influenced by statistical correlations between temperature and relative humidity. 

 Initially, the temperature profile, including surface temperature, is set to a 

climatological profile To which depends on latitude and season.  The new, minimum-

variance estimate of T is obtained by Newtonian iteration (Rodgers, 1976, eq. 101): 

                                    Testn-1  = To  + ST WT
T XT (5.1.11) 

where ST is the temperature covariance matrix and XT is the solution vector to 

[WT ST WT
T + Se + Sf ] XT  = Θobs- Θ - Θ’+ WT [ Testn-1 - To ] (5.1.12) 

The error covariance matrix (Se+Sf) includes the effects of surface brightness uncertainty, 

water vapor, liquid water, and instrument noise.  

The elements of the Jacobian matrix WT corresponding to the atmospheric part of the 

temperature vector are given by  

!" !T = K +G !# !T    (5.1.13) 

where K is equal to the temperature weighting function as defined by Schaerer and 

Wilheit (1979) integrated over the given atmospheric layer, G = !" !# , and !" !T  is 

computed by the rapid transmittance algorithm.  The second term on the right side of 

(5.1.13) is a small correction to the temperature weighting function. 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 55 

The elements of WT corresponding to TS are obtained by partial differentiation of Eq. 

(4.1.2): 

!"

!Ts
=
# "sky "s

Ts
2

    (5.1.14) 

The dependence on TS is nonlinear here because ΘS is considered to be a known input 

from the moisture algorithm. If the validity of a channel is zero, then the row of WT 

corresponding to that channel is set to zeros.  The dimensions of the matrix remain the 

same. 

The covariance of the temperature vector was computed from the TIGR ensemble 

(Chedin, et al., 1985). TS is assumed to have the same a priori mean and variance as the 

air temperature near the surface, but the covariances of TS with atmospheric temperatures 

are assumed to be reduced by a factor of 0.9 from those of the surface air temperature. 

5.1.1.5 Iteration Procedure and Convergence Tests 

After the temperature profile is updated using (5.1.11-12), the algorithm returns to the 

moisture and surface-brightness section for another iteration of (5.1.7-8), using weighting 

functions computed for the updated temperature and moisture profiles.  Convergence is 

tested separately for the temperature channels and for the moisture/surface channels; 

iteration of either part of the algorithm is suspended when one of the following conditions 

is met : (1) the computed brightness temperature vector Θ meets the closure criterion 

2

!
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i

" !
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" # ! 

i[ ]
$T
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2
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B

% & N
B

   (5.1.15) 

where ΔTi is the instrument noise (not the total measurement error) on channel i and NB is 

the number of valid elements in Θobs; or (2) when successive computations of the left side 

of (5.1.15) change by less than 1% of the right side, for the temperature channels, or 2% 

for the moisture/surface channels; or (3) when the number of iterations exceeds a preset 

limit, which is 12 for the temperature channels and 16 for the moisture/surface channels.  

Typically, iteration of the temperature profile ceases after one or two iterations, but the 

moisture profile often requires six or more iterations. 
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5.1.1.6 Output Flags 

Several error flags are produced by the microwave retrieval algorithm.  The 

'mw_ret_code' may contain any of the following values (or sums of values if more than 

one condition applies): 

  0: No error. 

  1: Moisture variables rejected. Test of residuals for channels AMSU1-8,15 and 

HSB2-5. 

  2: Troposphere temperature profile rejected.  Test of residuals for moisture-

related channels when integrated vapor > 6 mm or integrated cloud liquid > 0.1 mm, or 

for channels AMSU3-8 under any conditions. 

  4: Integrated cloud liquid water > 0.5 mm. 

  8: Insufficient valid channels to do the retrieval. 

 32: Derived surface emissivity > 1 for any AMSU frequency. 

 64: Stratosphere temperature profile rejected. Test of residuals for channels 

AMSU9-14. 

In polar regions, error value 1 may occur without 2, and is then considered nonfatal; i.e., 

processing continues to the IR retrieval stages. 

The Qual_MW_Only_Temp_Tropo flag is a summary of the bits in mw_ret_code that 

affect the tropospheric temperature quality (2, 4, 8, 32) and can have values 0: usable, or 

2: not usable. 

The Qual_MW_Only_Temp_Strat flag is a summary of the bits in mw_ret_code that 

affect the stratospheric temperature quality (8, 64) and can have values 0: usable, or 2: 

not usable. 
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The Qual_MW_Only_H2O flag is a summary of the bits in mw_ret_code that affect the 

moisture variables (1, 4, 8, 32) and in addition tests the surface type when HSB is not 

operating, because with AMSU alone, integrated vapor and liquid water can be retrieved, 

but only over a water surface (ocean or coastline). Possible values are 0: moisture profiles 

and integrals usable; 1: only integrals usable; 2: not usable. 

If the mean square of brightness temperature residuals for the HSB channels is greater 

than 64 (i.e., 8K rms per channel), then an ice-scattering flag ('cloud_ice') is set at all 

altitudes for which clouds are present and the temperature estimate is below 273 K. This 

typically flags intense precipitation systems like thunderstorms. 

 

5.1.2 Precipitation Flags, Rate Retrieval, and AMSU Corrections 

The precipitation algorithm produces the following: (1) flags indicating possible 

precipitation-induced perturbations impacting AMSU-A Channels 4, 5, 6, 7, and 8, (2) 

estimates of corrections that may, at the user’s option, be applied to AMSU-A brightness 

temperatures for channels 4, 5, 6, 7, and 8, to compensate for precipitation, if present, and 

(3) a precipitation-rate retrieval (mm/h) for each ~50-km AMSU-A and ~15-km AMSU-

B spot which was tuned for mid-latitudes using all-season NEXRAD data.  Inputs to the 

algorithm are fields of AMSU-A data for channels 1-12 and 15, the data for all four HSB 

channels, and topographical data.  Figures 5.1.4 and 5.1.5 are block diagrams of the 

algorithm. 

5.1.2.1 Precipitation Flags 

The objective of the flags for each of AMSU-A channels 4-8 is to alert users of this data 

to the possibility that retrievals based on these microwave channels might be impacted by 

precipitation. The four possible flag states are: 

0 The magnitude of the detected precipitation perturbations (if any) are less than 

0.5 K 

1 Small perturbations are present (nominally between 0.5 and 2 K), which are 

approximately correctable 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 58 

2 Estimated AMSU-A precipitation-induced brightness temperature perturbations 

for this channel may exceed 2 K in magnitude, so perturbation corrections are less 

reliable 

-1 It is unknown whether perturbations due to precipitation are present (e.g., 

surface elevation >2 km) 

These perturbations are discussed further in section 5.1.2.4. 

5.1.2.2 Perturbation Corrections 

Perturbation corrections are estimated for AMSU Channels 4, 5, 6, 7, and 8.  In addition, 

for each AMSU-A beam position a precipitation-rate estimate (mm/h) is provided when 

flag states 0, 1, or 2 exist for AMSU channel 4 (52.8 GHz).  Users of AMSU data for 

temperature profile retrievals should use brightness temperatures flagged with 2 or -1 

with caution, even if the suggested perturbation corrections are employed.  These 

perturbations are computed for AMSU-A channels 4-8 at ~50-km resolution using the 

algorithm diagrammed in Figure 5.1.4 and discussed in Section 5.1.2.4.  It should be 

noted that 52.8-GHz brightness temperatures can suffer warm perturbations over ocean 

due to low altitude absorption and emission by clouds or precipitation. Such warm 

perturbations could be flagged and corrected as are the cold perturbations.  The 23.8/31.4 

GHz combination could be used to validate the locations of such excess absorption and 

perturbations over ocean. 

5.1.2.3 General Description of the Rain Rate Retrieval Algorithm 
Accurate remote sensing of precipitation rate is challenging because the radiometric 

signatures of irregularly formed hydrometeors can depend strongly on their distributions 

in size, temperature, ice content and structure.  As a result, all active and passive 

microwave remote sensing methods rely on the statistical regularity of precipitation 

characteristics.  Experimental validation typically involves comparisons with rain gauges, 

radar, and other sensors, each of which has its own limitations.  Ultimately, precipitation 

retrieval methods are best validated by comparing several independent sensing techniques 

such as those to be tested with the Aqua mission and its co-orbiting satellites.  For 

example, CLOUDSAT will carry a 94-GHz precipitation imaging radar (G.L. Stephens et 
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al, Bull. Amer. Meteor. Soc., vol. 83, no. 12, pp. 1771-1790, 2002).  Relevant instruments 

on Aqua include the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the 

Moderate Resolution Imaging Spectrometer (MODIS), and AIRS itself. 

 

Figure 5.1.4. Precipitation-Rate Retrieval Algorithm, First Stage 
 

The primary precipitation-rate retrieval products of AMSU/HSB are ~15- and ~50-km 

resolution contiguous retrievals over the viewing positions of AMSU within 43º of nadir.  

The two outermost 50-km viewing positions (six outermost for 15-km) on each side of 

the swath are currently omitted due to their grazing angles.  The algorithm architectures 

for these two retrieval methods are presented below. 

5.1.2.4 Elaboration of 15- and 50-km Retrieval Algorithms 

The 15-km resolution precipitation-rate retrieval algorithm, summarized in Figures 5.1.4 

and 5.1.5, begins with identification of potentially precipitating pixels.  All 15-km pixels 

with brightness temperatures at 183 ± 7 GHz that are below a threshold T7 are flagged as 

potentially precipitating, where 
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 T7 = 0.667 (T53.6 - 248) + 252 + 6 cos θ   (5.1.16) 

and where θ is the satellite zenith angle.  If, however, the spatially filtered brightness 

temperature T53.6 at 53.6 GHz is below 249 K, then the brightness temperature at 183 ± 3 

GHz is compared instead to a different threshold T3, where: 

T3 = 242.5 + 5 cos θ                                              (5.1.17) 

This spatial filter picks the warmest spot within a 7×7 array of AMSU-B pixels.  The 

183±3-GHz band is used to flag potential precipitation when the 183±7-GHz flag could 

be erroneously set by low surface emissivity in very cold dry atmospheres, as indicated 

by T53.6.  These thresholds T7 and T3 are slightly colder than a saturated atmosphere would 

be, therefore lower brightness temperatures imply the presence of a microwave-absorbing 

cloud.  If the locally filtered T53.6 is less than 242 K, then the pixel is assumed not to be 

precipitating. 

Within these flagged regions strong precipitation is generally characterized by cold 

cloud-induced perturbations of the AMSU-A tropospheric temperature sounding channels 

in the range 52.5-55.6 GHz.  Examples of 183±7-GHz data and the corresponding cold 

perturbations at 52.8 GHz are illustrated in Figures 5.1.6(a) and (c), respectively.  These 

50-km resolution 52.8-GHz perturbations ΔT50, 52.8 are then used to infer the perturbations 

ΔT15, 52.8 (see Figure 5.1.6(d)) that might have been observed at 52.8 GHz with 15-km 

resolution had those perturbations been distributed spatially in the same way as the cold 

perturbations observed at either 183 ± 7 GHz or 183 ± 3 GHz, the choice between these 

two channels being the same as described above.  This requires the bi-linearly 

interpolated 50-km AMSU data to be resampled at the HSB beam positions.  These 

inferred 15-km perturbations are computed for five AMSU-A channels using: 

ΔT15,54 = (ΔT15,183 / ΔT50,183) ΔT50,54               (5.1.18) 

 

The perturbation ΔT15,183 near 183 GHz is defined to be the difference between the 

observed brightness temperature and the appropriate threshold given by (5.1.16) or 

(5.1.17).  The perturbation ΔT50,54 near 54 GHz is defined to be the difference between 
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the limb-and-surface-corrected brightness temperature and its Laplacian-interpolated 

brightness temperature based on those pixels surrounding the flagged region (Staelin and 

Chen, IEEE Trans. Geosci. Remote Sensing, vol. 38, pp. 2232-2332, Sept. 2000).  Limb 

and surface-emissivity corrections to nadir for the five 54-GHz channels are produced by 

neural networks for each channel; they operate on nine AMSU-A channels above 52 

GHz, the cosine of the viewing angle φ from nadir, and a land-sea flag (see Figure 5.1.4).  

They were trained on 7 orbits spaced over one year for latitudes up to ±55o.  Inferred 50- 

and 15-km precipitation-induced perturbations at 52.8-GHz are shown in Figures 5.1.6 

(c) and (d), respectively, for a frontal system.  Such estimates of 15-km perturbations 

near 54 GHz help characterize heavily precipitating small cells. 

 
Figure 5.1.5. Precipitation-Rate Retrieval Algorithm, Final Stage 

Such inferred 15-km resolution perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5 GHz are 

then combined with 1) the 183±1-, ±3-, and ±7-GHz 15-km HSB data, 2) the leading 

three principal components characterizing the original five corrected 50-km AMSU-A 

temperature brightness temperatures, and 3) two surface-insensitive principal components 

that characterize the window channels at 23.8, 31.4, 50.3, and 89 GHz, plus the four HSB 

channels.  All 13 of these variables, plus the secant of the satellite zenith angle θ, are 
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input to the neural net used for 15-km precipitation rate retrievals, as shown in Figure 

5.1.5. 

 

Figure 5.1.6. Frontal System September 13, 2000, 0130 UTC; (a) brightness 
temperature near 183±7 GHZ, (b) brightness temperatures near 183±3 GHz, (c) 
brightness temperature perturbations near 52.8 GHz, (d) inferred 15-km resolution 
brightness temperature perturbations near 52.8 GHz 

This network was trained to minimize the rms value of the difference between the 

logarithms of the (AMSU+1 mm/h) and (NEXRAD+1 mm/h) retrievals; use of 

logarithms prevented undue emphasis on the heaviest rain rates, which were roughly 

three orders of magnitude greater than the lightest rates.  Adding 1 mm/h prevented 

undue emphasis on the lightest rates.  NEXRAD precipitation retrievals with 2-km 

resolution were smoothed to approximate Gaussian spatial averages that were centered on 

and approximated the view-angle distorted 15- or 50-km antenna beam patterns. The 

accuracy of NEXRAD precipitation observations are known to vary with distance, so 

only points beyond 30 km but within 110 km of each NEXRAD radar site were included 

in the data used to train and test the neural nets.  Eighty different networks were trained 
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using the Levenberg-Marquardt algorithm, each with different numbers of nodes and 

water vapor principal components.  A network with nearly the best performance over the 

testing data set was chosen; it used two surface-blind water vapor principal components, 

and only slightly better performance was achieved with five water vapor principal 

components with increased surface sensitivity.  The final network had one hidden layer 

with 5 nodes that used the tanh sigmoid function.  These neural networks are similar to 

those described by Staelin and Chen (IEEE TGARS, vol. 38, no. 5, pp. 2232-2332, 2000).  

The resulting 15-km resolution precipitation retrievals are then smoothed to yield 50-km 

retrievals. 

 

 
Figure 5.1.7. Precipitation Rates (mm/h) Observe September 13, 2000, 0130 UTC: 
(a) 15-km resolution NEXRAD retrieval, (b) 15-km resolution AMSU retrieval, (c) 
50-km resolution NEXRAD retrieval, (d) 50-km resolution AMSU retrieval 
 
The 15-km retrieval neural network was trained using precipitation data from the 38 

orbits listed in Table 5.1.2.  Each 15-km pixel flagged as potentially precipitating using 

183 ± 7 GHz or 183 ± 3 GHz brightness temperatures (see Equations 5.1.16 and 5.1.17) 
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was used either for training, validation, or testing of the neural network. For these 38 

orbits over the United States, 15,160 15-km pixels were flagged and considered suitable 

for training, validation, and testing; half were used for training, and one-quarter were 

used for each of validation and testing, where the validation pixels were used to 

determine when the training of the neural network should cease.  Based on the final 

AMSU and NEXRAD 15-km retrievals, approximately 14 and 38 percent, respectively, 

of the flagged 15-km pixels appear to have been precipitating less than 0.1 mm/h for the 

test set. 

Table 5.1.2. List of Rainy Orbits used for Training, Validation, and Testing 
16 Oct 1999, 0030 UTC 30 Apr 2000, 1430 UTC 
31 Oct 1999, 0130 UTC 14 May 2000, 0030 UTC 
2 Nov 1999, 0045 UTC 19 May 2000, 0015 UTC 
4 Dec 1999, 1445 UTC 19 May 2000, 0145 UTC 

12 Dec 1999, 0100 UTC 20 May 2000, 0130 UTC 
28 Jan 2000, 0200 UTC 25 May 2000, 0115 UTC 
31 Jan 2000, 0045 UTC 10 Jun 2000, 0200 UTC 
14 Feb 2000, 0045 UTC 16 Jun 2000, 0130 UTC 
27 Feb 2000, 0045 UTC 30 Jun 2000, 0115 UTC 
11 Mar 2000, 0100 UTC 4 Jul 2000, 0115 UTC 
17 Mar 2000, 0015 UTC 15 Jul 2000, 0030 UTC 
17 Mar 2000, 0200 UTC 1 Aug 2000, 0045 UTC 
19 Mar 2000, 0115 UTC 8 Aug 2000, 0145 UTC 
2 Apr 2000, 0100 UTC 18 Aug 2000, 0115 UTC 
4 Apr 2000, 0015 UTC 23 Aug 2000, 1315 UTC 
8 Apr 2000, 0030 UTC 23 Sep 2000, 1315 UTC 

12 Apr 2000, 0045 UTC 5 Oct 2000, 0130 UTC 
12 Apr 2000, 0215 UTC 6 Oct 2000, 0100 UTC 

 
 
5.1.2.5 Preliminary Validation of Retrieval Accuracy 

This section presents three forms of validation for this initial precipitation-rate retrieval 

algorithm: 1) representative quantitative comparisons of AMSU and NEXRAD 

precipitation rate images, 2) quantitative comparisons of AMSU and NEXRAD retrievals 

stratified by NEXRAD rain rate, and 3) representative precipitation images at more 

extreme latitudes beyond the NEXRAD training zone.  For the results reported in this 

section, the threshold below which the retrieval algorithm used the 183±3-GHz channel 

to flag potentially precipitating pixels was 248 K instead of 249 K as reported in the first 

paragraph of 5.1.2.4.  The threshold was changed from 248 K to 249 K in order to reduce 

the probability of false precipitation around high-altitude regions. 
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Figures 5.1.7(a) and (b) presents 15-km resolution precipitation retrieval images for 13 

September 2000 obtained from NEXRAD and AMSU, respectively.  On this occasion 

both sensors yield rain rates over 50 mm/h at similar locations, and lower rain rates down 

to 1 mm/h over similar areas.  The revealed morphology is very similar, despite the fact 

that AMSU is observing approximately 6 minutes before NEXRAD, and they are sensing 

altitudes that may be separated by several kilometers; rain falling at a nominal rate of 10 

m/s takes 10 minutes to fall 6 kilometers.  Similar agreement is obtained at 50-km 

resolution, as suggested in Figures 5.1.7(c) and (d). 

 

 

 
Figure 5.1.8. Comparison of H, for AMSU and NEXRAD Estimates of Rain Rate at 

15-km Resolution 
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Figure 5.1.9. Comparison of AMSU and NEXRAD Estimates of Rain Rate at 50-km  

Resolution 
 

Figure 5.1.8 shows the scatter between the 15-km AMSU and NEXRAD rain-rate 

retrievals for the test pixels not used for training or validation.  Figure 5.1.6 shows the 

scatter between the 50-km AMSU and NEXRAD rain-rate retrievals over all points 

flagged as precipitating.  First, we note that the maximum rain rates retrieved by AMSU 

and NEXRAD over all points where retrievals are possible at 15-km resolution were 159 

and 270 mm/h, respectively, and that these maxima were 100 and 95 mm/h for 50-km 

resolution.  These rates can be compared to the rain rate distributions found in GATE 

where more than 99 percent of all rain fell at rates less than 100 mm/h (Bell and Sushani, 

J. Applied Meteorology, vol. 33, pp.1067-1078, Sept. 1994). 

Next, it is interesting to see to what degree each sensor retrieves rain when the other does 

not, and how much rain each sensor misses.  For example, of the 73 NEXRAD 15-km 
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rain rate retrievals in Figure 5.1.5 above 54 mm/h, none were found by AMSU to be 

below 3 mm/h, and of the 61 AMSU 15-km retrievals above 45 mm/h, none were found 

by NEXRAD to be below 16 mm/h.  Also, of the 69 NEXRAD 50-km rain rate retrievals 

in Figure 5.1.6 above 30 mm/h, none were found by AMSU to be below 5 mm/h, and of 

the 102 AMSU 50-km retrievals above 16 mm/h, none were found by NEXRAD to be 

below 10 mm/h. 

The relative sensitivity of AMSU and NEXRAD to light and heavy rain can be seen from 

Figure 5.1.9.  In general, the figure suggests that AMSU is relatively less sensitive to 

high rain rates.  The risk of overestimating rain rate also appears to be limited.  Only 3.3 

percent of the total AMSU-derived rainfall was in areas where AMSU saw more than 1 

mm/h and NEXRAD saw less than 1 mm/h.  Only 7.6 percent of the total NEXRAD-

derived rainfall was in areas where NEXRAD saw more than 1 mm/h and AMSU saw 

less than 1 mm/h.  These percentages can be compared to the total percentages of AMSU 

and NEXRAD rain that fell at rates above 1 mm/h, which are 94 and 97, respectively. 

Perhaps the most significant AMSU precipitation performance metric is the rms 

difference between the NEXRAD and AMSU rain rate retrievals for those 15-km pixels 

not used for training or validation; these are grouped by retrieved NEXRAD rain rates in 

octaves.  The central 26 AMSU-A scan angles and the central 78 AMSU-B scan angles 

were included in these evaluations; only the outermost angles on each side were omitted.  

The results are listed in Table 5.1.3 for both 15- and 50-km retrievals.  The smoothing of 

the 15-km NEXRAD and AMSU results to nominal 50-km resolution was consistent with 

an AMSU-A Gaussian beamwidth of 3.3 degrees. 

The rms agreement between these two very different precipitation-rate sensors appears 

surprisingly good, particularly since a single AMSU neural network is used over all 

seasons and latitudes.  The 3-GHz radar retrievals respond most strongly to the largest 

hydrometeors, especially those below the bright band near the freezing level, while 

AMSU interacts with the general population of hydrometeors in the top few kilometers of 

the precipitation cell, which may lie several kilometers above the freezing level.  Much of 

the agreement between AMSU and NEXRAD rain-rate retrievals must therefore result 
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from the statistical consistency of the relations between rain rate and its various 

electromagnetic signatures.  It is difficult to say how much of the observed discrepancy is 

due to each sensor, or to say how well each correlates with precipitation reaching the 

ground. 

This study furthermore provided an opportunity for evaluation of radar data.  The rms 

discrepancies between AMSU and NEXRAD retrievals were separately calculated over 

all points at ranges from 110 to 230 km from any radar.  For NEXRAD precipitation rates 

below 16 mm/h, these rms discrepancies were approximately 40 percent greater than 

those computed for test points at 30-110 km range.  At rain rates greater than 16 mm/h, 

the accuracies beyond 110 km were more comparable.  Most points in the eastern U.S. 

are more than 110 km from any NEXRAD radar site. 

 

Table 5.1.3. RMS AMSU/NEXRAD Discrepancies (mm/h) 
NEXRAD 

range 
15-km 

resolution 
50-km 

resolution 
<0.5 mm/h 1.0 0.5 
0.5-1 mm/h 2.0 0.9 
1-2 mm/h 2.3 1.1 
2-4 mm/h 2.7 1.8 
4-8 mm/h 3.5 3.2 

8-16 mm/h 6.9 6.6 
16-32 mm/h 19.0 12.9 
>32 mm/h 42.9 22.1 

 
 
5.1.2.6 Global Retrievals of Rain and Snow 

Figure 5.1.10 illustrates precipitation-rate retrievals at points around the globe where 

radar confirmation data is scarce.  In each case the results are plausible and 

meteorologically revealing.  Figure 5.1.10(a) shows precipitation retrievals in the tropics 

over a mix of land and sea, while Figure 5.1.10(b) shows a more intense tropical event.  

Figure 5.1.10(c) illustrates strong precipitation near 72-74º N, again over both land and 

sea.  Finally, Figure 5.1.10(d) illustrates the March 5, 2001, New England snowstorm that 

deposited roughly a foot of snow within a few hours.  This accumulation is somewhat 

greater than is indicated by the rain rates of ~1.2 mm/h that were inferred by the same 

algorithm.  This applicability of the algorithm to snowfall rate should be expected 
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because the observed radio emission originates exclusively at high altitudes.  Whether the 

hydrometeors are rain or snow upon impact depends only on air temperatures near the 

surface, far below those altitudes being probed.  One of the principal Aqua validation 

activities will involve testing and tuning of the precipitation retrievals for climates not 

adequately represented in the NEXRAD training data set.  For example, polar stratiform 

precipitation is expected to exhibit relatively weaker radiometric signatures in winter 

when the temperature lapse rates are lower. 

 

Figure 5.1.10. AMSU Precipitation Rate Retrievals (mm/h) with 15-km Resolution: 
(a) Philippines on 16 April 2000, (b) Indochina on 5 July 2000, (c) Canada on 2 

August 2000, and (d) New England snowstorm on 5 March 2000 
5.1.2.7 Conclusions 
These evaluations of rain rate with 15- and 50-km nominal resolution suggest that 

AIRS/AMSU/HSB rain rate retrievals will usefully supplement other global precipitation 

data sets over both land and sea at rates up to 100 mm/h or more, and that an early 

scientific objective of the Aqua program should be to reconcile and inter-calibrate these 
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various approaches.  They also suggest that most 15-km spots precipitating more than 1 

mm/h should be readily identifiable.  It also appears likely that further training and 

validation would be helpful for atmospheric conditions remote from those occurring in 

the eastern United States. 
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5.2 Cloud Clearing 
5.2.1 Overview 

Cloud clearing refers to the process of determination of the clear-column radiances for 

AIRS channel i, R̂i,  which represent what channel i “would have observed” if the entire 

scene were cloud free.  In the context of AIRS Version 4.0, the entire scene is the AMSU 

A Field of Regard (FOR), in which observations in a 3 x 3 array of AIRS Fields of View 

(FOV’s) are present. Observations in the 3 x 3 array of AIRS FOV’s are taken at 3 

different zenith angles.  The cloud-clearing methodology attributes differences in these 

radiances to differing cloud conditions within the FOR.  Therefore, a process referred to 

as local angle adjustment is applied to these observed radiances, channel by channel, to 

generate angle adjusted radiances Ri,k , representative of the radiances AIRS channel i 

would have observed in FOV k if the observation were taken at the satellite zenith angle 

of the center FOV within the FOR, rather than at its actual satellite zenith angle.  Details 

of the methodology to perform this adjustment are given in Section 5.2.2. 

The basic inputs to the cloud-clearing process are Ri,k  and an (nth) estimate of the 

surface and atmospheric state.  Auxiliary fields needed are the AIRS channel-tuning 

coefficients, channel noise file, and RTA coefficients.  These are used together to 

generate the nth estimate of cloud-clearing coefficients !k
(n)  which can be used to 

determine R̂i
(n)
.  Radiances in some channels are not sensitive to clouds in the Field of 

View, and for these channels, it is better to average the observations Ri,k  over the 9 

fields of view to obtain R̂i
(n)
.  Other important parameters obtained in the cloud-clearing 

process are the channel-noise amplification factor, A(n) , the effective channel-noise 

amplification factor, Aeff
(n) , and the clear-column-radiance noise covariance matrix, M̂ij

(n) .   

Figure 5.2.1 gives a flow diagram showing the basic steps involved in the cloud-clearing 

process.  Details are given in Section 5.2.4. 
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Figure 5.2.1. Cloud Clearing Overview 

 
5.2.2 Local Angle Adjustment of AIRS Observations 

The cloud-clearing algorithm assumes that the observed AIRS radiances in footprints 

falling within the composite AMSU-A retrieval footprint differ only because of different 

cloud characteristics within the footprints. Other parameters, such as the viewing angle, 

are assumed constant over the 3 x 3 array of AIRS footprints being used. This means the 
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radiances in the 9 AIRS footprints at 3 different zenith angles (!)  must be adjusted to 

what they would have been if they observed otherwise the same scene but at a common 

central zenith angle (!cen )  before cloud clearing is attempted.   The procedure used to 

achieve this adjustment is described below. 

The coefficients of the correction are based on synthetic regression, a process in which 

regression coefficients are generated using radiances that are simulated for a range of 

cloud conditions and profiles that cover the expected atmospheric range. AIRS radiances 

are calculated for each of the 90 AIRS viewing angles and AMSU-A radiances are 

calculated for the AMSU-A footprint viewing angle. Noise is added, but care must be 

taken that it be treated properly. The radiances being calculated are an attempt to simulate 

the measurements that would have been observed if the viewing angles were different. 

Thus all other factors, including the noise, do not change with angle. What this means for 

the simulation is that the added noise is random over the set of profiles and for each 

channel, but is constant over the viewing angle. In other words, once the noise is 

determined for a channel and a profile, that same noise is used for all 90 AIRS viewing 

angles. It must only be constant over the 3 viewing angles that cover each AMSU-A 

footprint, but it is easier to keep it constant over all 90 spots.  

Let prof be the profile index, fp be the footprint number, νbe channel frequency and  

be the zenith angle, respectively; the noisy radiance for a given profile, footprint,  

channel and local zenith angle is:  

oR(prof , fp, , ) R (prof , fp, , ) (prof , fp, )! " = ! " + # !     (5.2.1)  

where R(prof, fp,!,")  is the noise free radiance, and !(prof, fp,")  is the noise for the 

particular profile, spot, and channel. The consequence of not treating the noise properly is 

to cause large errors in the predictants used to generate the coefficients, with a 

corresponding adverse effect on the resulting coefficients. Many angle adjustment 

procedures currently in use do not properly handle the instrumental noise.  

In the following discussion, the term "weighting function" is used to denote the 

contribution function that describes the region of the atmosphere being viewed by a 
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particular channel. The observed radiance for a particular channel changes with angle in 

two ways. One is that the weighting function peaks in a higher region of the atmosphere 

when the angle moves away from nadir. The other is that the weighting function becomes 

slightly narrower. This occurs because, to a first approximation, the majority contribution 

to the observed radiance for a particular channel arises within a confined slab of the 

atmosphere. When viewed at an angle, the slab is thinner in atmospheric height. For the 

small angles under consideration, the second effect is small. If the weighting function 

peak for a channel is raised slightly in the atmosphere, there is a linear combination of the 

given channel with nearby channels that, for a given profile, provides the same radiance 

at the observed angle as the given channel would have provided if observed at nadir. The 

correction procedure employed here seeks to find and use that linear combination.  

For a given channel, regression coefficients are generated that give the change in radiance 

as a linear function of observed radiances. Radiances are used rather than brightness 

temperatures to avoid Planck equation calculations. The exponentiation within the Planck 

equation is computationally intensive. Furthermore, an error can result if a low 

temperature coupled with noise causes the calculated value to go negative. For daytime 

conditions, the predictors are principal component scores of the eigenvectors of the 

radiances plus the difference of cosines of the solar zenith angles between the AIRS and 

AMSU-A observations. For nighttime conditions the predictors are the principal 

component scores of the eigenvectors of the radiances. The additional term for daytime 

conditions is proportional to the change in solar energy falling on a horizontal surface due 

to the change in viewing angle. This term is important for the shortwave channels.  

In applying the angle correction, the first step is to normalize the observed radiances by 

dividing by the instrumental noise for the given channel. The next step is to generate the 

eigenvectors of the predictors. In practice, the regression uses the 45 principal component 

scores for the 45 eigenvectors with the highest eigenvalues as predictors. Use of the 

eigenvectors prevents the solution from becoming singular. For daytime, the matrix of 

predictors is given by:  
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 Xday =
Ro(prof, fp,!,")

#(!)
+ (cos($) % cos($cen ))

&

'
(

)

*
+xE    (5.2.2) 

for nighttime, the matrix of predictors is given by: 

 Xnight =
Ro(prof, fp,!,")

#(!)
$

%
&

'

(
)xE       (5.2.3) 

where E denotes the matrix of eigenvectors and εν)denotes the instrumental noise for the 

channel. Once the predictors are available, the regression is given by:  

( ) ( ), ( , ) , ( )! " = ! " + ! " "oA C C X       (5.2.4) 

where C !,"( )  denotes the vector of regression coefficients. 

The vector of adjusted radiances may then be computed:  

R !,"( )angle _ adjusted = R !,"( )obs + A !,"( )      (5.2.5) 

where R !,"( )
obs

 denotes the vector of original measured radiances.  

Separate coefficients are generated for day and night. Although the daytime coefficients 

may be used to calculate the adjusted radiances at night, the errors that are generated are 

of the same magnitude as those produced during the day and thus larger than they would 

otherwise be. While the errors in the daytime corrections are small, nighttime corrections 

produced with nighttime coefficients are much more accurate. This is an important 

consideration because in daylight, the visible channels can be used to help cloud 

detection.   At night, cloud detection has to rely on relationships between channels at 

different wavelengths.   The increased accuracy for the short wavelength channels is an 

important factor in the ability to detect clouds.  
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5.2.3 Principles of Cloud Clearing 

Infrared observations at most wavelengths are affected by clouds in the field-of-view. 

Three basic approaches used for accounting for effects of clouds in satellite remote 

sensing are: 1) identify clear areas and only perform retrievals in those areas, with no 

cloud correction needed; 2) use channel observations in adjacent potentially partially 

cloudy scenes to reconstruct what the channel radiances would have been if the scenes 

were clear, and use these reconstructed observations to determine geophysical 

parameters; and 3) determine both surface and atmospheric geophysical parameters, as 

well as cloud properties, from the radiance observations themselves.  An example of the 

first approach is given by Cuomo, et al., (1993). Eyre (1989a, 1990) has used the third 

approach in simulation by assuming an unknown homogeneous amount of black clouds at 

an unknown pressure, and attempted it with real TOVS data as well (Eyre, 1989b).  Our 

approach, like that used in Susskind (1993), is of the second type and is an extension of 

that used by Smith (1968), Chahine (1974), and Chahine (1977). This approach utilizes 

satellite observed radiances, Ri,k , corresponding to channel i and field-of-view k, made 

over adjacent fields-of-view.  In this approach, there is no need to model the radiative and 

reflective properties of the clouds. The only assumption made is that the fields-of-view 

are homogeneous except for the amount of cloud cover in K different cloud formations in 

each field-of-view.   R̂i,  the radiance which would be observed if the entire field of  view 

were clear, and 
 
Ri,clr,! , the radiance which would be observed if the entire field of view 

were covered by cloud formation  , are therefore assumed to have the same respective 

values in each field-of-view.  If the observed radiances in each field-of-view are 

different, the differences in the observed radiances are then attributed to the differences in 

 
!!k , the fractional cloudiness for cloud formation    in field-of-view k.  In the following 

discussion, Ri,k  represents the observed channel i radiance in FOV k after it has been 

adjusted to what it would have been if it were observed at the central zenith angle of the 

FOR, as shown in Section 5.2.2. 
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Using the assumption described above, Chahine (1977) showed that the reconstructed 

clear-column radiance for channel i, R̂i,  can be written as a linear combination of the 

measured radiances in K+1 fields-of-view,  Ri,1 ! !Ri,K+1,   according to  

i i,1 1 i,1 i;K 1 k i,1 i,(K 2) k K i,1 i,2R̂ R R R R R R R+ + !" #" # " #= +$ ! + % % %$ ! + % % %$ !& ' & '& '         (5.2.6) 

where !1 " " " !K are unknown channel independent constants, and K+1 fields-of-view  

(FOV's) are needed to solve for K cloud formations (with K lineaerly independent values 

of ! ).   

Cloud formations should be distinguished from cloud types.  For example, if three fields 

of view are considered, and two cloud types exist, with cloud top pressures at 300 mb and 

700 mb, and the respective cloud fractions as seen from above are (10%, 20%), (20%, 

40%), and (30%, 60%) in each field of view, then only a single cloud formation exists 

with cloud fractions of 30%, 60%, and 90% in each field of view respectively.  If instead, 

the third field of view had cloud fractions of 30% and 65%, then 5% of a second cloud 

formation exists in the third field of view only.  The above discussion applies only to 

cases in which the upper cloud type is opaque, and a portion of the scene, as observed 

from above, corresponds to cloud type 1, cloud type 2, or the surface.  If the upper cloud 

type is semi-transparent, then a portion of the scene can correspond to cloud type 1 

overlaying the surface, cloud type 1 overlaying cloud type 2, cloud type 2, and the 

surface.   In such a case, three cloud formations will exist in general even if the relative 

amounts of each cloud type are as initially stated above. 

In Chahine (1977), the fields-of-view are ordered such that FOV 1 is the clearest field-of-

view based on observations in the 11 µm window (the field-of-view with the highest 11 

µm radiances is assumed to be FOV 1) and FOV K+1 is the cloudiest. Thus !1  

multiplies the largest radiance differences and !K  the smallest.  Once !1 " " " !K  are 

determined, Equation (5.2.6) is used to produce the reconstructed clear column radiances 

for all channels used in the retrieval process. The reconstructed clear column radiances 

are then used when solving for the geophysical parameters. This approach has been 

successfully applied to fields-of-view, assuming one cloud formation, in the analysis of 
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HIRS2/MSU operational sounding data by several authors (McMillin and Dean, (1982), 

Susskind, et al., (1984), Susskind and Reuter (1985a) and Chahine and Susskind (1989)) 

and is the method used by NOAA/NESDIS in production of their clear column radiances 

used in generation of operational HIRS2/MSU retrievals (McMillin and Dean, 1982). 

Chahine and Susskind (1989) show that retrieval accuracy using this approach, verified 

by co-located radiosondes, does not degrade appreciably with increasing cloud cover, for 

retrieved cloud fractions of up to 80%.  Susskind and Reuter (1985b) have performed 

simulations with two cloud formations and three fields-of-view for the AMTS instrument, 

an earlier version of AIRS (Chahine, et al., 1984), used in conjunction with MSU.  

Susskind, et al., (2003) describe an improved cloud clearing methodology for use with 

AIRS/AMSU data and show, via simulation, that sounding accuracy does not degrade 

appreciably with increasing cloudiness up to 80% effective fractional cloud cover.  The 

methodology we use to analyze AIRS/AMSU data is identical to that of Susskind, et al. 

,(2003) and is described in detail in Section 5.2.4. 

5.2.4 Cloud Clearing Methodology 
As in Susskind et al. (2003), one sounding is generated for the 3x3 array of AIRS footprints 

(FOV’s) within a given AMSU A footprint (FOR).  The basic equation is analogous to 

Equation (5.2.6), but we have found it is advantageous (as suggested by L. McMillin) to 

extrapolate the radiances in the K fields of view according to a similar equation of the form 

                   
K

i i,AVG k i,AVG i,k
k 1

R̂ R (R R )
=

= + ! "#              (5.2.7) 

where Ri,AVG  is the average radiance of all K fields of view.  Optimal values of !k  will 

give true values of R̂i  up to instrumental noise effects.   Only K-1 linearly independent 

values of !  are obtainable from Equation (5.2.7), to the extent that K-1 cloud formations 

exist within the FOR. 

Susskind, et al., (1998) used the 9 AIRS spots within an AMSU A footprint to construct 3 

fields of view used to determine 2 values of !  to be used in Equation 5.2.6.  Field of 

view 1 was comprised of the average of the observations in the 3 warmest spots in an 8 

µm  window channel, and field of view 3 was the average of 3 coldest spots.  We now use 
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all radiances in all spots separately and determine 9 values of ! , up to 8 of which are 

linearly independent.  Given !k , clear column radiances for all channels can be obtained 

from Equation 5.2.7.  As in Susskind, et al., (1998), we determine the values !  from 

observations in a selected set of I(= 44) cloud filtering channels which are primarily in 

between lines in the 15 µm  CO2 band with some additional channels in the long wave and 

short wave window regions.  If, for each channel i, one substitutes an estimated value of 

the expected clear column radiance for channel i, Ri,CLR ,  for R̂i  in Equation 5.2.7, this 

gives I (44) equations for K (9) unknowns.  The unconstrained weighted least square 

solution to this multilinear problem is given by 

   !Kx1 = " #R N$1"R%
&

'
( KxK
$1 " #R N$1 "RCLR          (5.2.8) 

where !R  is a IxK matrix with !Ri,k = RAVG " Ri,k , !RCLR  is an Ix1 matrix given by 

!Ri,CLR = Ri,CLR " Ri,AVG , and N is an IxI channel noise covariance matrix. 

The key to the accurate determination of !  is obtaining the best values of !Ri,CLR , 

along with an accurate treatment of the noise covariance matrix N.  As in Susskind, et al., 

(1998), we assume the noise in channel i used to determine !  is dominated by errors in 

!Ri,CLR .  The values of !Ri,CLRwhich we use to determine !  (and R̂i ) are iterative 

and are computed based on the current best estimate of all relevant surface and 

atmospheric properties.   

For optimal results, it is important for the estimates of geophysical parameters used to 

obtain !Ri,CLR  to be unbiased over large regions of the atmosphere.  For example, if the 

estimated temperature profile were uniformly too warm, values of !Ri,CLR  computed 

from this profile would all be too high and incorrect values of !k  would be obtained 

which would reconstruct too high values of R̂i .  To avoid this, we make sure that the 

profile used to estimate !Ri,CLR  is consistent with observations in all AMSU A (and 

HSB) channels, thus insuring an unbiased temperature and moisture profile over coarse 

layers in the  atmosphere.  It would be a mistake to use a GCM generated analysis or a 
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forecast field directly to compute Ri,CLR  because this field, while potentially accurate, 

could be biased in the vertical.   

The iterative methodology to determine clear column radiances consists of four passes to 

determine !n  (n = 1, 2, 3, 4), using four sets of conditions, described later, to compute 

Ri,CLR
n , in which Ri,CLR

n  and hence !n , become increasingly more accurate for each 

iteration.  Each set of conditions has its own Nn , reflecting expected errors in 

Ri,CLR
n

! Ri,1 .  The diagonal term of the noise covariance matrix is modeled according 

to 

( )
( )

( )

( )

i
i

i
i

i,CLR i,CLR
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s
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# $
) *'% . / . /) *+ + +0 1 0 1%) * 2 3 2 3
) *
+ ,

           (5.2.9a) 

where NE!Ni  is the channel i instrumental noise and the next 5 terms are contributions 

to errors in the computed value Ri,CLR  resulting from errors in estimated surface skin 

temperature, surface spectral emissivity, surface spectral bi-directional reflectance of 

solar radiation, and temperature and moisture profile respectively.  Two additional 

sources of radiance uncertainty are included in Equation 5.2.9a, representative of the 

physics error estimate, Nii  (see Section 5.4.11.3), and an additional radiance uncertainty 

term.  Both terms (Nii  and 0.1) are in brightness temperature units.  The off diagonal 

term of the noise covariance matrix is given by 
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( )
i j

i j

2j jn n n ni i
ij s

s s

R RR R
N T . . . .

T T ! !
! !

" "" " # $
= % + %& %& +' (" " "& "& ) *

             (5.2.9b) 

The partial derivatives in Equations 5.2.9a and 5.2.9b are determined empirically by 

computing the radiance using the current estimate of each parameter and recomputing it 

after a small change in that parameter.  In Susskind, et al., (1998), the uncertainties, such 

as 
 
!T

s

n , are specified so as to be indicative of the expected errors for that parameter in 

pass n.  We now predict these errors on a profile-by-profile basis for each pass by 

propagation of expected sources of error through the retrieval process in a manner 

described in Section 5.4.9.  A principal source of retrieval error arises from errors in the 

reconstructed clear column radiances. 

5.2.4.1 Selection of Optimal Fields of View 

The effects of instrumental noise on the clear column radiances will in general be 

amplified from single spot noise values because the clear column radiances are expressed 

as a linear combination of the observations in different fields of view.  If there were no 

other sources of error, the diagonal term of the clear column radiance noise covariance 

matrix in a given pass, referring to the error in R̂i  obtained by Equation (5.2.7), would be 

 

!R̂ " ! ˆ #R$% &' ii= NE(Ni
2 "A )k( )

2                      (5.2.10) 

where A !k( )  is the noise amplification factor, given by 

A !k( ) =
1

9
" 1+ ! #k

#k =1
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&'

(
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+ !k

%

&'
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.                     (5.2.11) 

A !k( )  is approximately equal to !k
2"#$
%
&
1/2  because the first term, containing the 

factor 1/9, is small.  It is desirable to find an accurate expression for clear column 
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radiance which minimizes A !k( ) .  We can minimize A !k( )  by expressing Equation 

(5.2.7) in terms of radiances in an optimal set of fields of view, given by linear 

combinations of the original set.  The optimal A !k( )  can be found by transforming the 

original contrast terms !Rk  to a new set, !Rk
T , according to  

!Ri,k
T

" Uk, #k
#k

$ % !Ri, #k               (5.2.12) 

where U  is the unitary transformation which diagonalizes ! "R #N
$1

# !R  

 

!U " # !R "N$1 " #R( ) "U%
&

'
( k, !k = )k " *k, !k .                   (5.2.13) 

 

This is equivalent to having originally selected fields of view in which 

 

                                 Rk
T
= RAVG ! Uk, "k

"k

# RAVG ! R "k( ) .                             (5.2.14) 

 

One eigenvalue !k  is always zero because only 8 linearly independent values of !Ri,k  

exist.  In transformed space, 

 

                                           R̂i = Ri,AVG + !k
k=1

Kmax
" # $Ri,k

T                (5.2.15) 
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and the solution for k!  is given by 

          !k = "k
#1 $ %R &T $N#1 $ %RCLR( )                                           (5.2.16) 

where !Ri,k
"T  is the transpose of !Ri,k

T   .   

It is apparent that large eigenvalues !k  imply low values of !kwhile small eigenvalues 

imply large (and undesirable) values of !k .  The eigenvalues themselves indicate the 

degrees of freedom in the radiances in the different fields of view corresponding to the 

different number of cloud formations.  Typical cloud formation eigenvalues are the order 

of 1000.  We discard all eigenvalues less than 25 and set Kmax  accordingly, with the 

constraint that Kmax  is never greater than 4.  We also do not include any eigenfunction 

whose eigenvalue is less than the uncertainty in !k , given later in Equation (5.2.19).  

Discarding low eigenvalues reduces the noise amplification factor by suppressing noise 

in the solution for ! , according to 

!k = Uk, "k #$ "k
"k =1

Kmax
%                                 (5.2.17) 

resulting in lower values of ! .   The values of !k  obtained from Equation 5.2.17 are 

then used in Equation 5.2.7 to give R̂i.  

Under certain pathological conditions, one or more cloud formations may not result in 

significant eigenvalues of ! "R N
#1
!R  and cannot be solved for, resulting in a poor 

solution.  The most obvious example of this is a single cloud formation with a constant 

cloud fraction in each field of view.  Here !R  is not influenced by cloud contrast and is 

comprised of noise only.  The most common examples of this are all fields of view are 

clear, which is a benign case, or all fields of view are overcast, which is a case which 

must be otherwise identified and rejected.  Likewise, with two cloud formations, if the 

lower cloud deck is overcast, a proper reconstruction of the clear column radiances 

cannot be obtained.  In this case, if the cloud fraction of the upper cloud in field of view k 
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is !1k , then the lower cloud fraction as seen from above, !2k , is 1! "1k .  In general, if 

!2k = A + B!1k  for all k, then cloud formation 2 will have a zero eigenvalue of 

! "R N
#1
!R  up to noise effects.  The benign case occurs when A=0, corresponding to a 

truly single cloud formation. 

5.2.4.2 Contribution of Clouds to the Retrieval Channel Noise Covariance Matrix 

The physically  based retrieval methodology described in section 5.4 requires a channel 

noise covariance matrix M representing channel correlated errors in the terms 

R̂i ! Ri
m( ) and R̂ j ! R j

m( )  where Ri
m  is the radiance computed for channel i based on 

the mth iterative solution.  The channel noise covariance matrix is the sum of two parts, 

resulting from noise in the reconstructed clear column radiances !R̂i  with noise 

covariance M̂ , and noise in the computed radiances !Ri
m  due to uncertainty in the 

parameters assumed known, with noise covariance  !M .  

ij ij
ˆ ˆ ˆM R R! "#= $ $% &   is the expected noise covariance matrix for the channel clear column 

radiances.  The noise in R̂i  obtained from Equation (5.2.7) has two parts, arising from 

instrumental noise NE!Ni , and from cloud clearing errors coming from errors in !k .  

Errors in !k will cause channel correlated clear column radiance errors.  Clear column 

radiances for those channels affected by clouds will have this additional error due to 

errors in ! .  For the AIRS instrument, the channel noise is spectrally uncorrelated, giving 

the final result 

( )
22 T T

ii i k ii
ˆ ˆR R NE N A R R

!" #" #! !$ $ = % & + % $'$' %( ) ( )
 (5.2.18a) 

and 

T T
ij ij

ˆ ˆR R R R
!" #" #! !$ $ = % $&$& %' ( ' (

      (5.2.18b) 
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where !" ! #"  is the error covariance of ! .  If N, as defined in Equation (5.2.9), is indeed 

representative of the noise in the determination of ! , then it can be shown (see Equation 

5.4.17) that  

        !" ! #"[ ] k #k = $R #T
N
%1$RT&

'
(
)
%1
= *k

%1!k #k .               (5.2.19) 

In the special case for which we determine that channel i does not "see" the clouds (i.e., 

stratospheric sounding channels or tropospheric sounding channels peaking significantly 

above the highest cloud top), the clear column radiance is best described as the average 

radiance in all fields of view.  For these channels, the scene appears to be clear and we 

can define effective values of !CLR  for “clear” channels as !k
CLR

= 0  for all k.  For 

these channels (see Equation 5.2.11), 

A !k
CLR( ) = 1

3
                (5.2.20) 

which is a noise reducer.  For “clear” channel i, one can write 

M̂ij =
1

9
NE!Ni

2
"ij                  (5.2.21) 

where j is any other channel and !ij  is the Kronecker delta function.  

In a given FOR, a channel to be determined not to see clouds according to our algorithm, 

it must be included in a list showing a 95% probability of not seeing a cloud, which is 

pre-computed as a function of cloud top pressure and zenith angle.  In addition, the 

standard deviation of the radiances in the 3x3 array of AIRS spots must be less than twice 

the channel noise.  Otherwise, it is assumed to channel sees clouds in this FOR. 

For channels which see clouds, the clear column noise covariance can now be expressed as 

M̂ij = NE!Ni NE!NjA "k( )
2
#ij + !Rik

T !R jk
T $k

%1( )
k=1

Kmax
&  .   (5.2.22)
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Errors in clear column radiances can be larger than predicted by Equation (5.2.22), 

however, because !k
"1  is just an estimate of !"! #"( )

k #k
.  Moreover, Equation (5.2.22) does 

not take into account contributions to the noise covariance matrix arising from higher 

components of !  not solved for (k > Kmax) as well as fitting errors due to a poor first guess.  

Another estimate of the error in the !  parameters can be computed using weighted radiance 

residuals in the channels used in the cloud clearing retrieval, Ri,CLR ! R̂i . If we take 

Ri,CLR ! R̂i  as the uncertainty of i,CLRR! , then using Equation (5.2.16), we estimate the 

uncertainty in k! according to 

        !"̂!ˆ#"$
%

&
' kk=

1

(k

)

*+
,

-.

2

/Rk,i
T
Nii
01( )

2

i

1 Ri,CLR 0 R̂i( )
2      (5.2.23) 

which we evaluate  for all significant functions k with !k > 10
"3 .   This includes eigen 

functions with !k  < 25 and therefore not included in the solution for R̂i .  For values of 

k ! Kmax , we take 

     !"! #"[ ] kk=MAX $k
%1
, !"̂!ˆ#"&
'

(
) kk

&
'

(
)             (5.2.24) 

and for values of k between Kmax and Ksig (significant eigenvalues !k > 10
"3 ) we set  

     !"! #"[ ] kk= !ˆ"!ˆ#"$
%

&
' kk                  (5.2.25) 

and write 

M̂ij = NE!Ni NE!NjA "k( )
2
#ij

+ !Rik
T

k=1

Ksig

$ !R jk
T #%# &%[ ] kk

   .            (5.2.26) 

One can think of Equation (5.2.26) in terms of a different effective noise amplification 

factor Ai,eff  for each channel i 

       M̂ii = NE!Ni
2
A
2
i,eff                  (5.2.27) 

where 
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Ai,eff = A !k( )
2
+

"Ri,k
T2 #$# %$[ ] kk
NE"Ni

2
k=1

ksig

&
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)
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1/2

.          (5.2.28) 

The channel effective noise amplification factor is largest for channels which see the 

surface and have potentially large values of the scene contrast !Ri,k .  We find it 

convenient to define an effective noise amplification factor relevant to the surface channel 

retrieval step as the RMS value of Ai,eff  over all NSURF infrared channels used in the 

surface retrieval step 

Aeff =
1
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Very large values of Aeff  can arise when !"! #"  is large (Aeff  is sometimes 100 or 

more) and indicate a large uncertainty in the determination of the clear column radiances.  

These large uncertainties are sometimes caused by hidden, or nearly hidden cloud 

formations, and often correlate with poor solutions.  Alternatively, Aeff  can be large if 

there are significant errors in the geophysical parameters used to compute 
 
R

i,CLR
 even if 

the cloud conditions are relatively simple. 

5.3 AIRS Post-Launch First Guess Regression Procedure 

The NOAA/NESDIS eigenvector regression product derives temperature, moisture, 

ozone profiles, skin temperature, and emissivity from the AIRS cloud-cleared radiances 

and is used as a first guess for the physical retrieval. In general, a regression is derived 

from a ”training dataset” that are geophysical states compiled from radiosonde profiles, 

satellite retrieved profiles, a numerical weather prediction model, or climatologies, or 

some combination of the above. Satellite radiances corresponding to the geophysical 

training dataset are used to derived a linear statistical relationship between radiances and 

the geophysical state. A regression provides fast and accurate initial guesses for 

temperature, moisture, and ozone profiles as well as surface parameters (Goldberg, et al., 

2003). 

 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 88 

 

Eigenvector regression for atmospheric sounding was first demonstrated by Smith and 

Woolf (1976). Eigenvectors are also commonly referred to as empirical orthogonal 

functions (EOF’s) in the literature.  Because of the large number of channels measured by 

AIRS, the eigenvector form of regression is crucial for exploiting the information content 

of all channels in a computationally efficient way. By representing radiometric 

information in terms of a reduced set of eigenvectors (much fewer in number than the 

total number of instrument channels, described in sub-section 5.3.1), the dimension of the 

regression problem is reduced by approximately one order of magnitude. Another 

advantage of using a reduced set of eigenvectors is that the influence of random noise is 

reduced by elimination of higher order eigenfunctions which are dominated by noise 

structure. It should be noted that if all eigenvectors are retained as basis functions, the 
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eigenvector regression reduces to the ordinary least squares regression solution in which 

satellite measurements are used directly as predictors. 

Eigenvectors of the radiance covariance matrix are computed from AIRS cloudy radiance 

and are used as basis functions to represent the AIRS radiometric information. The 

generation of the covariance matrix and derivation of the eigenvector coefficients is 

discussed in sub-section 5.3.1. The use of principal component analysis reduces the data 

into fewer components that still retain the information content of the original data. 

These components are commonly referred to by statisticians as Principal Component 

Scores (PCSs). AIRS cloud cleared radiances are converted to PCSs and then used to 

solve for atmospheric temperature, moisture, ozone, surface temperature. The training of 

these geophysical regressions is discussed in sub-section 5.3.3. 

The application of these coefficients to compute PCSs from AIRS cloud cleared 

radiances is discussed in sub-section 5.3.5 and the use of those PCSs to compute 

temperature, T(p), moisture mixing ratio, rw(p), and ozone mixing ratio, ro(p), is discussed 

in sub-sections 5.3.7, 5.3.8, 5.3.9, respectively. 

A synthetic regression (simulated AIRS radiances) is used to derive the surface 

emissivity coefficients and is discussed in sub-section 5.3.10. 

5.3.1 Generating the Radiance Covariance Matrix and Eigenvectors 

The covariance matrix of radiance is derived from an ensemble of AIRS spectra. 

Radiances span two orders of magnitude between the long-wave and short-wave 

channels, therefore, we normalized the AIRS spectra by the AIRS instrument noise, 

NEDNn(m), to minimize numerical effects associated with round-off error. 

For version 4.0 a single day of AIRS radiances was determined to be adequate to describe 

the entire variance of radiances. A global ensemble of AIRS cloudy radiances from 15 

January 2003 was used as the ”training” data for eigenvector coefficients. Since there is a 

large redundancy in the AIRS granules, a subset was constructed from the AIRS FOV’s. 

In each of granule every 9th FOV (1st,10th,19th,. . .,82nd) from every 45th scan line 
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(45th,90th,135th) was used. This resulted in Je = 240 · 10 · 3 = 7200 spectra to be used for 

training. 

In the version 4.0 regression a total of Me = 1680 channels were considered to be reliable 

for all post launch epochs based on the AIRS science team channel property files (v6.6.x) 

and a summary list of channel behavior over two years, compiled by Margaret Weiler. In 

addition, channels that are affected by non thermodynamic equilibrium (P-branch side of 

the 4.3 μm CO2 band) were also removed. The AIRS channel numbers used are listed in 

Table 5.3.8 for reference. 

Detector arrays can experience spurious events that can alter the noise characteristics. 

The AIRS L1b calibration can mark certain channels as bad on any arbitrary scan line. 

For training of eigenvectors and regression coefficients any spectra containing bad 

channels are removed from the training ensemble. 

The deviations of the normalized radiances from their sample mean is denoted as Δ˜Θm,j, 

a matrix of dimensions [m = 1,Me j = 1, Je], where Me = 1680 is the total number of 

instrument channels and Je = 7200 is the sample size of the training data set for 

eigenvector coefficients. The deviation matrix is given by 

 (5.3.1) 

The covariance matrix of the normalized radiances, Δ˜Θcov, is a square matrix of order Me 

= 1680 and is given by 

                                (5.3.2) 

The diagonal elements of Δ˜Θcov represent the variance of the respective channel noise 

scaled radiance while the off diagonal elements represent the covariance between pairs of 

channels. We normalize ΔΘcov by the number of observations Je so that the magnitude of 

the eigenvalues does not change with the size of the training ensemble. 
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The relationship between the radiance covariance and eigenvectors and eigenvalues is 
given by: 

                          (5.3.3) 

where Λk,k  is a diagonal matrix with elements equal to λk. We use the routines TRED2, 

TQLI in Press, et al., 1986, pgs. 350-363, to derive Ek ,m and λk and the routine EIGSRT to 

order the eigenvalues in terms of the amount of the total data variance. The largest λk 

explains the most variance and each successive eigenvector explains progressively less of 

the total data variance. The square root of eigenvalues is equivalent to the standard 

deviation of the principal component scores (PCSs, see Eqn. 5.3.6) of the training 

ensemble. Since we are using normalized radiances, the square root of the eigenvalues 

can be interpreted as signal-to-noise; however, this is only an approximation since the 

AIRS short-wave band noise is a function of the scene radiance. 

In Figure 5.3.1 the eigenvalues are shown for the training day used in the v4.0 PGE. Also 

shown are eigenfunctions of a 3-day (9/6/02, 9/29/02, and 1/25/03) ensemble of synthetic 

AIRS radiances in which we used models for temperature, moisture, ozone, and carbon 

trace gases, and instrument noise models to compute radiances. The difference between 

these two curves represents the information not contained within the synthetic radiances, 

most likely due to clouds. The fact that the eigenvalues beyond k = 1000 decrease and 

become smaller than the eigenvalues from the simulated clear radiances is an indication 

that we may need more than Je = 7200 cases for the training of the EOF’s or that we need 

more than one training day. In version 5.0 this will be addressed. In Figure 5.3.2 the first 

100 eigenvalues are shown for the v4.0 PGE training day. Again, eigenvalues from 

synthetic clear radiances is shown for comparison. 

In this formalism, the significant eigenvalues are those that are above the noise “floor”. 

Random noise should generate constant eigenvalues, thus we examine Figure 5.3.1 to 

find the “knee” in the curve. To the right of this “knee” the information content is 

dominated by noise. The optimal number (Kmax) has been determined to be 85 for 

capturing the information content of the measurements from AIRS. Using a greater 

number of eigenvectors tends to make the regression result more sensitive to noise. Once 
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Kmax is determined, those eigenfunctions are used as basis functions to represent the 

original radiance information in terms of PCS’s. The EOF training procedure produces 

the following coefficients: 

1. The average radiance of the Je scenes used in the training ensemble, < Rn(m),j >Je 

2. The eigenvalues, λk 

3. The most significant eigenfunctions, Ek,m. 

4. and the noise used in the computation NEΔNn(m) 

The file format for these coefficients is described in Sec. 5.3.2. 
 

 

 

Figure 5.3.1. The values of λk for AIRS cloudy radiances (solid line) and simulated 
AIRS clear radiances (dashed line) 
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Figure 5.3.2. The first 100 values of λk for AIRS cloudy radiances (solid line) and 
simulated AIRS clear radiances (dashed line) 

 

5.3.2 NOAA Eigenvector File Format 

The eigenvector file is written out with the following components using FORTRAN 
formatted I/O. 

• A header block with 

– the number of channels in the subset, Me = 1680, format(i13) 

– the number of eigenvectors, Kstore = 200, format(i13) 

– A flag if radiances are used (set to T), format(2x,L1) 

– A flag is the mean is subtracted (set to T), format(2x,L1) 

• The average of ˜Θ for the Me channels, format(1x,5g15.7) 

                             (5.3.4) 

• Each eigenvector, Ek,m, is written out as a single record of Me elements for each 
value of k = 1,Kstore, 
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format(1x,5g15.7) 

• The value of λ(k) for k = 1,Me, format(1x,5g15.7) 

• The value of NEΔNn(m) for m = 1,Me, format(1x,5g15.7) 

• The value of channel wavenumber, νn(m), for m = 1,Me. format(1x,5g15.7) 

• The value of n(m) for m = 1,Me. format(1x,6i12) 

5.3.3 Generating Regression Coefficients from Principal Component Scores 

AIRS viewing geometry changes along the scan-line from −48.95◦ ≤ α ≤ 48.95◦. The 

regression could have been trained at each of the 30 view angles, or with the assumption 

of symmetry about nadir we could have used 15 view angles; however, this creates the 

need for a large volume of coefficients and memory requirements. After some analysis it 

was decided to train the regression in four view angle regimes, defined in Table 5.3.1, 

and use two additional predictors; one for which side of nadir the observation is made, 

and the other is the view angle of the observation. In this way, the regression is allowed 

to fit the radiances as a function of angular variability over a narrow range of angles and 

can adjust the fit for scan asymmetry. 

Table 5.3.1. View-angle Regimes in the NOAA Regression 

 
 

In our algorithm, we normalize PCSs by the square root of the eigenvalue to minimize 

numerical roundoff error in the computation. Again we employ Eqn. 5.3.1, reproduced 

below, to convert our spectrum of Me channels, for an ensemble of scenes, into PCSs to 

be used for training the regression coefficients. The Jr scenes used for training the 

regression coefficients are not the same scenes as used in training the eigenvectors, that is 

Jr  = Je. In the AIRS science team algorithm we will apply the regression coefficients to 

cloud cleared radiances, therefore, cloud cleared radiances are used to compute the 
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regression coefficients. Each spectrum Rn(m),j , is first converted to a signal-to-noise 

departure from the average of the eigenvector training ensemble, < Rn(m),j >Je 

           (5.3.5) 
 
and then converted into PCS’s 
 

      (5.3.6) 
 

Only k = 1,Kmax principal components are kept, where Kmax = 85 is the number of 

significant eigenvalues determined in sub-section 5.3.1. 

A predictor array is constructed using the PCSs for those cases with α1(v) < |α| ≤ α2(v), 

where α is the instrument view angle. The predictor argument for the sub-set of cases is 

assembled with the first Kmax elements being set equal to Pk,j . The element i = Kmax + 1 is 

set equal to one if α < 0 or zero if α ≥ 0. The element i = Kmax +2 is set equal to 1−cos 

.  Therefore, the complete predictor vector used in this regression can be given by 

                               (5.3.7) 
 

For AIRS, we use Kmax = 85 principal component scores for predictors and solve for 

atmospheric temperature, moisture, ozone profiles, and surface temperature. Initially, 

only one day of data was thought to be sufficient to generate regression coefficients; 

however, we found that the analysis field may have large errors in certain regions. 

Currently, three days from AIRS observations for the generating regression coefficients 

are 6 September 2002, 25 January 2003, 8 June 2003, collocated with estimates of the 

true atmospheric profiles (i.e., ECMWF). Data are selected by screening out cases where 
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the AIRS cloud cleared radiances may be affected by clouds and where there may be 

problems with the geophysical states used as “truth” using the following tests: 

1. The brightness temperature of the AIRS observation in channel # 2112, 
B
!

"1
(R

n(m )
)  must be within ± 5 K of the predicted brightness temperature, 

Θ(2212), computed from AMSU radiances, ΘA(n). We use AMSU channels n = 4, 
5, and 6 to compute the predicted AIRS radiance, Θ(2112), as follows 

       (5.3.8) 
where the coefficients of the AMSU screening test used to predict AIRS channel 
#2112 (f = 2390.53cm−1) are 

 

 
 

2. The reconstruction score, given in Eqn. 5.26, is less than 1.25. 
 

3. Compare the brightness temperatures, computed from the training ensemble 
geophysical states with the AIRS cloud cleared radiances for a set of channels 
given below. The difference between observed and computed brightness 
temperature for all 12 channels must be within 2 K. The 12 channels are 

 

 
 

There are approximately 2,700,000 total spectral samples for the three training days and 

about 26,000 passed the three threshold tests above. The approximate number in each 

view angle regime, Jr(v) is given in Table 5.3.1.  
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Another issue for the regression is that topography limits the available training ensemble 

for some altitude layers. For each case, j, there is a maximum number of vertical levels 

defined by the surface pressure (that is,some of the 100th layer grid is below the surface). 

If this lower level is given as Lbot then the number of cases in the training ensemble, Jr, is 

a function of how many cases have surface pressure above that level, that is, each profile 

is only valid over the range of L = 1, Lbot. Therefore, the number of cases in the regression 

training ensemble is a function of both view angle regime, v, and the vertical atmospheric 

layer, L. Regression is a linear operator and, as such, each layer and view angle regime is 

a separate regression. 

We can write the total number of cases used for training the regression in each layer of 

the atmosphere and each view-angle regime as Jr(v,L). These are the cases that satisfy the 

view-angle criteria in Table 5.3.1 and have valid geophysical parameters in the layer 

under consideration in Xi. We can compute the average predictor argument for this subset 

ensemble and subtract that from the training ensemble 

            (5.3.9) 

For temperature we train the regression on the layer mean temperature for atmospheric 

layer L and also for surface skin temperature. For moisture the regression is trained on 

both the loge(rw(L)) and rw(L), where rw(L) is the mass mixing ratio of water in 

grams/kilo-gram (g/kg) within layer L. For ozone the regression is only trained on 

loge(ro(L)) where ro(L) is the mass mixing ratio within layer L. The generalized equation 

we will solve, for Xi = T(L),Xi = Tsurf,Xi = rw(L),Xi = loge(rw(L)), andXi = loge(O3(L)), is 

given by 

                     (5.3.10) 
where we can write, 

                                (5.3.11) 

See Table 5.3.2 for a translation from our parameter space, Xi, to geophysical layer 

parameter XL. We can solve Eqn. 5.3.10 for the regression coefficients, A
i,k

! , as follows: 
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                       (5.3.12) 

No additional regularization is needed in Eqn. 5.3.12 since the principal components have 

been regularized by selecting only Kmax = 85 of the principal components. Once A
i,k

! is 

determined we can combine the average of the geophysical parameter given in Eqn. 

5.3.11,  

 

and the average of the predictor given in Eqn. 5.3.9, 

 

into a single value, called  

 

so that our regression equation can utilize the un-normalized predictors. We can rewrite 

Eqn. 5.3.11 as 

                    (5.3.13) 

where A
i

!  is defined as 

                           (5.3.14) 

Once the regression matrix is known it is useful to compute the mean and standard 

deviation of the error between the regression, applied to the training ensemble radiances, 

and the geophysical value in the training ensemble. This is the fitting error. Each case has 

an error, δX, given by 

                          (5.3.15) 

For each geophysical parameter we can compute a mean and standard deviation of the 

regression error (difference of regression from the training values). The mean error is 

given by 
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                   (5.3.16) 

and should be zero for the training ensemble. The standard deviation of the error is given 

by 

                               (5.3.17) 

The standard deviation can be compared to the standard deviation of the training 

ensemble’s departure from its mean, given in Eqn. 5.3.11. 

                     (5.3.18) 

The mean and standard deviation of the regression error and the standard deviation of 

training ensemble are all written into the regression coefficient file (see section 5.3.4). 
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Table5.3.2. Geophysical parameters, Xi, solved in NOAA real-time regression 
(NOTE: rw = mass mixing ratioof water, ro = mass mixing ratio of ozone). The index i 

is used in the data file and the index L =1+(i−1)/4 is used in a storage vector in the 
retrieval code. 
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Figure 5.3.3. Regression Statistics for the V4.0 Temperature Regression. In each 

panel there are 4 lines corresponding to v = 1 (black), v = 2 (red), v = 3 (green) and v 
= 4 (blue). From left to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 (blue). From 
left to right the panels are Jr(υ ,L), <Χ i,j>Jr(υ,L), σ(ΔΧ i), using Eqn. 5.3.18, and σ(δXi) 

using Eqn. 5.3.17. 

 
Figure 5.3.4. Regression Statistics for the V4.0 Water Regression. In each panel 

there are 4 lines corresponding to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 
(blue). From left to right the panels are  

, 
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σ(ΔXi)/X, using Eqn. 5.3.18, and σ(δXi)/X, using Eqn. 5.3.17. Solid lines are 
the linear water regression and dashed lines are the logarithmic water 
regression, in which exponentials of X are computed to convert log(rw(L) 
into rw(L). 
 

 
Figure 5.3.5. Regression Statistics for V4.0 Ozone Regression. In each panel there 
are 4 lines corresponding to v = 1 (black), v = 2 (red), v = 3 (green) and v = 4 (blue). 

From left to right the panels are 

, 
σ(ΔXi)/X, using Eqn. 5.3.18, and σ(δXi)/X, using Eqn. 5.3.17. Exponentials of X are 

computed to convert log(ro(L) into ro(L). 
 

5.3.4 NOAA Regression File Format 

In the NOAA regression file each set of geophysical parameters is written for a view 

angle block. The index number system for the geophysical parameters is given in Table 

5.3.2 or 5.2. In the profile regression, the 393 parameters (1-388,393-397) are written out 

in 4 sequential blocks in the regression file. In the surface regression the 39 emissivity 

regressions are written out for the 4 land types. The overall structure of the data file looks 

like 

• Header Block for Profile Regression 

• 393 regression sets for view angle regime number 1 
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• 393 regression sets for view angle regime number 2 

• 393 regression sets for view angle regime number 3 

• 393 regression sets for view angle regime number 4 

• Header Block for Synthetic Emissivity Regression 

• 39 regression sets for land surface type 1 (non-frozen land) 

• 39 regression sets for land surface type 2 (non-frozen ocean) 

• 39 regression sets for land surface type 3 (ice) 

• 39 regression sets for land surface type 4 (snow) 

Each regression set includes the following: 

• The header line, format(2i4,a10,i6,4f10.5), for the profile and emissivity 
regression set contains 

– The parameter number (see Table 5.3.2) 

– The number of predictors, I = Kmax + 2 

– The pressure at level L or frequency at emissivity n. 

– The number of cases in training ensemble, Jr(v,L) or J (l). 

– The mean of the training ensemble,  

 

– The standard deviation of the training ensemble, σ(ΔX(L)) 

– the standard deviation of the error of the regression applied to the 
training ensemble, σ(δX(L)) 

• A block of I + 1 = Kmax + 3 coefficients, starting with  

   

and then the I values of Ai(L) are written with format(8g15.7) 
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5.3.5 Computing Principal Component Scores from AIRS Radiances 

We begin by computing the radiance argument from AIRS cloud-cleared or clear 

radiances for our single spectrum for scene j using Eqn. 5.1 for the Me channels used in 

the eigenvector array. 

                       (5.3.19) 

The channel list, n(m), noise values, NEΔNn(m), and average radiance, < ˜Θ >m, are all 

read in from the eigenvector coefficient file. 

We then convert the radiance argument into principal component scores; however, some 

of the AIRS HgTeCd detectors may suffer from a phenomena described as “popping” in 

which the detector has a non-Gaussian noise event that can be many NEΔN units. This 

“popping” occurs for any arbitrary channel about 1:10,000,000 measurements. When 

training eigenvectors or regression coefficients any spectra containing bad channels are 

simply removed from the training ensemble. When applying the regression operationally 

the use of a bad channel can be quite detrimental, therefore, we need a dynamic ability to 

remove BAD channels from our algorithm. In the physical algorithm, the channel is 

simply removed from consideration; however, in regression algorithms a bad channel 

cannot be removed. 

Bad channels can be found by monitoring the reconstruction scores (see Eqn. 5.3.26) and 

the difference between the reconstructed and the observed radiances. If AIRS level1B 

radiance quality flags indicated the radiance is sub-optimal (i.e., the CalFlag bit 4,5,6 is 

set), we compute the PCSs by using the mean deviations of the neighboring good 

channels of the bad channels (using the average of the 10 neighboring channels). Then 

we use this set of PCSs to reconstruct those channels that are marked bad. After that we 

recomputed the PCS, substituting the reconstructed radiances for the bad channel(s) and 

use that PCS for regression retrieval. 

 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 105 

For example, if channel m0 is BAD in radiance set Rn(m0),j for case j it can be crudely 

estimated by the average value of the neighboring radiances. 

              (5.3.20)  

where m0 −i is the ith closest valid radiance, within our channel list, on the low 

wavenumber side of m0 and m0 +i is the the ith closest valid radiance on the high 

wavenumber side. In the PGE code we exclude any of the i channels that are marked bad, 

so there can be less than 10 channels in Eqn. 5.3.20; however, this event is incredibly 

rare. We begin by using this estimate in place of the bad radiance(s) to compute an initial 

guess for the principal component score, Pk , j
0  

               (5.3.21) 

Once Pk , j
0  is computed, the BAD radiance for channel m0 can be estimated from all the 

remaining good radiances and our estimate of the bad radiance. This approach can only 

work if there is redundant information contained within the spectrum. For AIRS the 1680 

channels can be represented by approximately 85 principal components, therefore, the is 

approximately a 20:1 redundancy in the AIRS spectrum. The radiance argument for the 

bad channels is replaced by one computed from our entire spectrum as follows 

 , where, m0 is the index of the BAD channel      (5.3.22) 

Then the PCSs can be recomputed from the improved estimate of the bad radiance along 

with the good radiances. 

                   (5.3.23) 

This process could be iterated until Pk , j
i

 converges; however, the first iteration appears to 

be adequate in operation. Basically, we use principal components to generate 

reconstructed radiances and to compute the Root Mean Square (RMS) between the 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 106 

reconstructed radiances and the observed radiances. It appears that the RMS for most 

cases is comparable with the instrument noise level, therefore AIRS observations can be 

reconstructed very accurately by using about 85 PCSs. 

We use the first iteration of the PCSs, Pk , j
1 , in all our regression applications in the next 

three sections. 
 

5.3.6 Computing Radiance Reconstruction Scores 

Reconstructed radiances are computed from the principal component scores (PCSs) and 

inverting Eqn. 5.3.19 to obtain a radiance. 

              (5.3.24) 

The reconstructed radiances can be thought of as noise free radiances, therefore, we can 

estimate the noise in the spectrum by taking the difference between the radiance 

argument and the reconstructed radiance argument as follows 

              (5.3.25) 

If we take the root-sum-square of RS then we have a single parameter that describes the 

quality of the spectrum. 

                (5.3.26) 

A value reconstruction score equal to one is an indication that the radiance noise is 

statistically equal to the our noise estimate, NEΔNn(m). The reasons that a reconstruction 

score is different than one could be due to: 

• The spectrum has bad channels that were not identified. 

• Instrument problems, such as incorrect detector temperatures, scan mirror not 
pointing toward the Earth, etc. 

• The instrument noise has changed or is significantly different that NEΔN (e.g., 
in warm scenes the AIRS noise in the short wave becomes larger, hence, RSj will 
be larger than 1). 
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• The spectrum contains information that was not in the eigenvector training 
ensemble, Je. For example, a volcano can produce trace gases, such as sulfur 
dioxide, which has a unique spectral structure that is not represented in our Kmax 

eigenvectors. 

The value of RSj is shown in the top panel of Figure 5.3.6 from the real-time NOAA 

radiance monitoring web-page: 

(http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html). 

In this case an eigenvector set trained on 1688 channels was used of which 8 have been 

permanently removed in the eigenvector training discussed in this ATBD. On the bottom 

panel the number of channels marked bad is also shown. In Figure 5.3.7 the 

reconstruction score is shown for a single day. Notice that the ascending (daytime) orbits 

show some high scores over desert regions. 

 
Figure 5.3.6. Upper Panel: Value of RSj versus Time. Lower Panel: Number of 

Channels Marked Bad by the L1 QA. Ascending observations shown in gold color 
and descending shown in blue. From NOAA real-time web site: 

http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html 
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Figure 5.3.7. The Value of RSj as a Function of Geography for Ascending (Top) and 

Descending (Bottom) Observations. From NOAA real-time web site: 

http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/xindex.html 
 

5.3.7 Computing Temperature and Skin Temperature from Principal 
Component Scores 

The temperature profile is derived from PCSs computed in Eqn. 5.3.23 as follows 

                          (5.3.27) 

and Tsurf is computed as 

               (5.3.28) 
Note that the regression coefficients can be related to empirical kernel functions,  

~

K
n
L( )

 

for channel n and pressure layer L. In the eigenvector regression the empirical kernel 
functions can be computed for each view angle regime, v, by 
 

                    (5.3.29) 
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where, we assumes positive view angles (to eliminate need for scan side predictor) and 

i(L), is the subset of indices for the selection of the geophysical parameter group (e.g., 

T(L), is given for L = 1, 2, 3, . . ., which is given by i = 1, 5, 9, . . . in Table 5.3.2) 

 
Figure 5.3.8. Example of Empirical Kernal Functions, using Eqn. 5.3.29, for Four 
AIRS Channels, using the NOAA V4.0 Regression. Black is at α = 47°  red is at α 
= 35° , green is at α = 25° , and blue is at α =10° . 

An estimate of the propagated error in the principal components for case j, δ ˆ Pk,j , can be 

given by the root-sum-square (RSS) of the linear combination and an estimate of the error 

in the radiance for case j, δRn(m),j . This results in an error in the argument of δ˜Θn(m),j ≡ 

δRn(m),j/NEΔNn(m) and 

     5.3.30) 

A propagated error estimate can be computed from the linear combination of principal 

components 

                      (5.3.31) 
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5.3.8 Computing Water Vapor Regression from Principal Component Scores 

For moisture, the regression is trained on both the loge(rw(L)) and rw(L), where rw is the 

mass mixing ratio of water in grams/kilo-gram (g/kg). Both regressions are computed and 

the total precipitable water is computed from the linear mass mixing ratio regression. For 

each level, L, the index into the coefficient tables, i1 for rw and i2 for loge(rw) can be 

computed easily (see Table 5.3.2) 

              (5.3.32) 

        (5.3.33) 

For each profile we can compute the Total Precipitable Water (TPW) as follows 

                (5.3.34) 

If the TPW is less than 1 then we use rw(L) = rw1 (L) otherwise the mass mixing ratio used 

is rw(L) = exp(rw2 (L)). In addition, if TPW is less than 1 and any element of rw1 (L) is less 

than zero then exp(rw2 (L)) is substituted for that element (this may be changed for v5.0, 

since we do see some instances of very thin dry layers induced by this). In addition, the 

individual elements are never allowed to exceed the saturation mixing ratio, rs(L), given 

by 

                (3.3.35) 

The choice of coefficients is determined via an ICE flag. Water is valid over the range of 

-85 ≤ T−273.15 ≤ 70 Celsius and the ice coefficients are valid over the range of -85 ≤ T − 

273.15 ≤ 70 Celsius. The coefficients are given in Table 5.3.3. 
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Table 5.3.3. Vapor Pressure Coefficients (Flatau, Walto, and Cotton (1992) 

 
 

If we assume 
 
mw

t
! mw

d
and g = 980.64 ≈ 1000 then the mass mixing ratio can be 

converted to layer column density (molecules/cm2) as follows 

               (5.3.36) 

where mwt ! mwd + mww   
 

is the molecular weight for air, mwd is the molecular weight of dry air, mww is the 

molecular weight of water, mww = 18.0151 grams/mole, and NA is Avogadro’s number = 

6.02214199·1023 molecules/mole. The conversion to layer column density is done by the 

routine colden.F. In v5.0 we will remove the approximations above. This should remove 

a moist bias of approximately 2% in the tropical region. 

In a system that has performed a microwave physical retrieval of water vapor we can 

improve the regression solution over ocean if we adjust the regression water vapor to the 

total column water vapor from the microwave. This is done by summing the layer column 

densities from the microwave retrieval, 

 

C
w

MIT
= !C

w

MIT
(L)"  
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which is the total column density in molecules/cm2. The same calculation is done for the 
regression retrieval resulting in C

w

REG .  We then multiply the layer column density by the 
ratio of the total column densities from the regression and microwave retrieval, 
 

               (5.3.37) 

This is done in the routine amsu adj.F. Note that in version 5.0 this correction will be 

removed. With the loss of HSB the total water column derived from the AMSU radiances 

is not as accurate and this correction is removed. 

5.3.9 Computing Ozone Mixing Ratio from Principal Component Scores 

For ozone, the regression is trained on the natural logarithm of mass mixing ratio of 

ozone, loge(ro(L)), in grams/kilo-gram (g/kg). For each level L (see Table 5.3.2) the 

mixing ratio of ozone can be given as 

        (5.3.38) 
Again, if we assume  mwt ! mwd  and g = 980.64 ≈ 1000 then the mass mixing ratio can be 
converted to layer column density (molecules/cm2) as follows 
 

                  (5.3.39) 
where mw

o
= 47.9982 grams/mole is the molecular weight of ozone and NA is Avogadro’s 

number = 6.02214199 ·1023 molecules/mole. 
 

5.3.10 The Surface Emissivity Regression 

In the case of surface emissivity there is no truth datasets that we can utilize to train 

regressions with real AIRS radiance data. For emissivity we simulated J (l) cases where 

the infrared radiances were computed from the ECMWF forecast (15 December 2000) 

and a surface emissivity model (Fishbein, et al., 2003) was used for l different kinds of 

surface conditions (in v4.0 we performed separate regressions for land, ocean, ice, 
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and snow, see Table 5.3.6). The eigenvector approach was not used. We used a subset of 

AIRS radiances for M  window channels, R(n(m),j) to regress against the emissivities used to 

product those radiances,  (i, j). The M  frequencies, n(m) are given in Table 5.5. The 39 

frequencies where emissivity,  (i, j), was specified is given in Table 5.3.4. Notice that 

short-wave observations are not used to predict short-wave emissivity. This regression 

relies on statistical correlations between the short-wave and long-wave to solve for these 

parameters. 

 

The predictors consisted of the M  radiances, written as signal-to-noise (see Eqn. 5.3.1), 

and two predictor to account for atmospheric transmittance as a function of viewing 

angle; one for which side of nadir the observation was made and the other is the cosine of 

the view angle. Since all J (l) cases in the training ensemble see the surface, there is no 

subset for topography. Also, window channels require only a minor adjustment for view 

angle, so the complete ensemble was used rather than making separate regression for 

each view angle regime, as was done for the atmospheric parameters. The ocean 

emissivity is a well modeled function (i.e., the AIRS science team uses the Masuda, et 

al., (1988) model as modified by Wu and Smith (1997). The regression was performed on 

land, ocean, ice, and snow emissivity models. Figure 5.3.9 and Figure 5.3.10 are the 

average and standard deviation of surface emissivity for the four different types of land 

from the emissivity training used in the AIRS v4.0 regression. The complete predictor 

vector can be written as 

                 (5.3.40) 
where we can write, 
 

               (5.3.41) 

with the Xi’s defined in Table 5.3.5 and the least square solution is given by 
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                 (5.3.42) 

Again, once A
i,k

l
 is determined we can combine the average of the geophysical emissivity 

parameter and the average of the predictor into a single value, called Ai , so that our 

regression equation becomes 

                (5.3.43) 

where Ai

l

 is defined as 

                (5.3.44) 

These regression coefficients have the same format as the ones described in sub-section 

5.3.3 with geophysical index number given in Table 5.3.2.  

We use the land fraction and microwave surface class (defined in Table 5.3.7 to 

determine which surface regression coefficients to utilize. In Table 5.3.6 the logic used in 

both training and application of the coefficients is shown. 

Table 5.3.4. Frequencies for the 39-Point Model for Emissivity Regression 
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Table 5.3.5. AIRS Channels used in Surface EmissivityRegression 

 
 
Table 5.3.6. NOAA Regression Surface Classification Determination from % Land 

Cover (p) and Microwave Surface Classification (m) 

 

 
 

 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 116 

Table 5.3.7. Microwave Surface Class Definitions 

 
 

 
 

 
Figure 5.3.9. Mean Value of the Emissivity Training Database for the 4 Surface 

Types used in the V4.0 Regression 
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Figure 5.3.10. Standard Deviation of the Emissivity Training Databasefor the 4 

Surface Types used in the V4.0 Regression 
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Table 5.3.8. AIRS Channels used in Eigenvector Computation 
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Table 5.3.8. AIRS Channels (Continued) 
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Table 5.3.8. AIRS Channels (Continued) 

 
5.3.11 References for Statistical Regression 
Goldberg, M. D., Y. Qu, L. M. McMillin, W. Wolf, L. Zhou and M. Divakarla 2003. 

AIRS near-real-time products and algorithms in support of operational weather 
prediction. IEEE Trans. Geosci. Remote Sens.41 p.379-389. 

 
Fishbein, E., C. B. Farmer, S. L. Granger, D. T. Gregorich, M. R. Gunson, S. E. Hannon, 

M. D. Hofstadter, S. Y. Lee, S. S. Leroy and L. L. Strow 2003. Formulation and 
validation of simulated data for the atmospheric infrared sounder (AIRS). IEEE 
Trans. Geosci. Remote Sens. 41 p. 314-329. 

 
Flatau, P. J., R. L. Walko and W. R. Cotton 1992. Polynomial fits to saturation vapor 

pressure. J. Appl. Meteor. 31 p.1507-1513.  
 
Masuda, K., T. Takashima and Y. Takayama 1988. Emissivity of pure and sea waters for 

the model sea surface in the infrared window regions. Remote Sens. Envir. 24 
p.313-329. 

 
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettering 1986. Numerical 

Recipes in FORTRAN: the art of scientific computing, Cambridge Univ. 
Press, 818 pgs. 

 
Smith, W. L. and H. M. Woolf 1976. The use of eigenvectors of statistical covariance 

matrices for interpreting satellite sounding radiometer observations. J. Atmos. Sci. 
33 p.1127-1140. 

 
Wu, X. and W. L. Smith 1997. Emissivity of rough sea surface for 8-13 um: modeling 

and verification. Applied Optics 36 p.2609-2619. 
 

 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 121 

 
5.4 Final Product 
5.4.1 Introduction 

To satisfy the science requirements of NASA’s Earth Science Enterprise, a final 

adjustment is made to the first product based on the difference between calculated and 

cloud-cleared radiances, producing more accurate results.  In addition, final product steps 

calculate cloud parameters and research products not generated by the first product steps. 

When solving for a set of geophysical parameters, it is desirable to be able to choose an 

appropriate set of parameters to solve for and select channels that are both sensitive to 

those parameters and relatively insensitive to other parameters.  In general, channels will 

be affected by more than one type of parameter.  For example, channels with radiances 

sensitive to the water vapor or ozone distribution are also sensitive to the temperature 

profile and often to the surface skin temperature.  Our approach is to solve sequentially 

for the surface parameters, temperature profile, water vapor profile, and ozone profile in 

that order. In this approach, variables already solved for, used in conjunction with first 

guess variables, are kept fixed when solving for the next set of variables.  Table 5.4.1 lists 

the variables solved for and the number of channels used in each step.  The above order is 

chosen because channels can be selected for a given step that is relatively insensitive to 

variables to be solved for subsequently.   The general methodology described in Section 

5.4 is identical to that shown in Susskind, et al., (2003).  Some details have changed 

however, based on experience using observed, rather than simulated, AIRS data.  The 

areas where modifications to Susskind, et al., (2003) have been made are indicated. 

The iterative solution to the problem contains equations that are of the form of equation 

5.3.13. However, the final product methodology solves for updates to coefficients of 

functions of temperature, moisture, etc., rather than updates to the geophysical 

parameters themselves. Therefore, the terms in the equation have a very different 

meaning.  For this reason, a different notation is used so as not to confuse the reader.  For 

example, in place of A in the analog of equation 5.3.13, which refers to the derivative of 
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the radiance with respect to changes in a geophysical parameter, the sensitivity of the 

radiances to changes in the coefficients of the expansion functions, S, is used. 

 

Table 5.4.1. Variables and Channels 
Variables           Channels  Frequency Ranges 
 
         Ground Temperature Retrieval 
Ts,  2 IR spectral emissivity      15      759 - 1228 cm-1 
functions, 1 IR spectral bi-directional    10    2456 - 2659 cm-1  
reflectance function; 1 MW spectral     5     23.8 -  89 GHz 
 emissivity function       1        150  GHz  
 
         Temperature Profile Retrieval 
 23 layer temperature-       50      664 - 760 cm-1 

functions (trapezoids)         6    1238 - 1382 cm-1 
             9    2387 - 2396 cm-1 

       11     50.3 - 57.29 GHz 
 
          Water Vapor Profile Retrieval 
  10 layer column density functions       1  938 cm-1 
         33  1310 - 1606 cm-1 
           8  2607 - 2657 cm-1 
           4   23.8 - 89 GHz 
           3   150 – 189.31 GHz 
 
       Ozone Profile Retrieval 
  7 layer column density functions     26     997 - 1069 cm-1 

 

       CO Profile Retrieval 
 4 layer column density functions     20     2183 - 2193 cm-1 

 

       Cloud Clearing 
 4 unknown extrapolation parameters       33     672 - 755 cm-1 

            5     790 - 1133 cm-1 

              6   2420 - 2658 cm-1 

 
       Cloud Parameters 
 2 cloud top pressures           33     672 - 755 cm-1 

 2 effective cloud fractions per FOV       5     790 - 1133 cm-1 
 

Total: 57 variables 214 channels (AIRS + AMSU-A + HSB) 
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A total of 195 AIRS channels, 15 AMSU-A channels, and 4 HSB channels are selected 

for use in the AIRS/AMSU-A/HSB retrieval algorithm.  Some of the surface parameter 

sounding channels are also used in the water vapor or temperature profile retrievals.  

Therefore, the total number of channels is less than the sum of the channels in column 2.  

The 214 channels are used to solve for 42 variables.   HSB failed early in the mission.  

The HSB channels are not included in my processing step when AIRS is run in the 

AIRS/AMSU-A only mode.  Time periods before HSB failed were analyzed in both the 

AIRS/AMSU-A/HSB processing mode and the AIRS/AMSU-A processing mode so as to 

allow for consistency of products generated after HSB failed. 

The general AIRS/AMSU-A/HSB retrieval algorithm does not require any field of view 

to be cloud free (Susskind, et al., 1996).  The algorithm used in the final product retrieval 

consists of a number of steps.  Before the full physical retrieval procedure begins, there 

are a number of startup steps: (S1) Use the state resulting from the AIRS regression, 

X
(R) , as an initial guess for the temperature, moisture, and ozone profiles. X(R)  was 

computed using R̂i
(1) , derived based on the microwave state X(M) .  (S2) Derive an 

estimate of the cloud-cleared radiances and clear-column-radiance noise covariance 

matrix, R̂i
(2)  and M̂ij

(2)
,  based on the geophysical state X(R) .  (S3) X(R)  is now 

improved to give the initial guess used in the physical retrieval process X(0) , and is also 

used to generate R̂i
(3)  and M̂ij

(3)
.   This loop ends the basic startup procedure, that 

precedes the physical retrieval process.  The physical retrieval process sequentially 

determines:  (1) surface parameters; (2) temperature profile; (3) water vapor profile; and 

(4) ozone profile.  This improved state is used to derive the final cloud -cleared radiances 

R̂i
(4)  and channel noise covariance matrix M̂ij

(4) .   Cloud parameters as well as OLR and 

clear-sky OLR are derived based on retrieved geophysical state X(1) ,  or the microwave 

state X(M) , depending on quality control. A second pass physical retrieval is now 

performed using R̂i
(4)  and M̂ij

(4)  to improve the surface parameters and temperature 
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profile.  A CO profile is then derived using the final state X(2)  and R̂i
(4)  and M̂ij

(4) .   A 

flow diagram of the steps in the physical retrieval algorithm is given in Figure 5.4.1. 

The general approach used in the physical retrieval algorithm to solve for all the 

geophysical parameters is in the form of iterative, constrained least-squares solutions, one 

for each set of variables to be solved for. The form of the equations to be solved is 

identical for each of the four steps.  The following sections described the details of all the 

steps in the physical retrieval algorithm. 

5.4.2 Overview of the AIRS Physical Retrieval Algorithm 

AIRS has 2386 spectral channels.  Different channels are used in different steps of the 

AIRS physical retrieval process.   Figure 5.4.2 shows an example of an AIRS spectrum. 

All AIRS channels used in any physical retrieval step or in the cloud clearing step are 

marked in Figure 5.4.2.  Figure 5.4.2 includes channels sensitive to CH4 profile, but this 

retrieval step is not performed in Version 4.0 of the Science Team retrieval algorithm.  

Table 5.4.2, lists all the AIRS channels along with AMSU-A and HSB channels, used in 

cloud clearing or physical retrieval steps.   AMSU-A channels 8-14 are all in the vicinity 

of 57.29 GHz and all listed as such in Table 5.4.2.   Also indicated in Table 5.4.2 are the 

steps in which all channels are used. 
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Figure 5.4.1. Physical Retrieval Flowchart 
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Figure 5.4.2.  AIRS Channels, Physical Retrieval or Cloud Clearing 
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Table 5.4.2. AIRS, AMSU-A, and HSB Channels, Physical Retrieval and Cloud 

Clearing 
 !(cm

"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

  650.33            X                          
  650.81           X                          
  652.01            X                           
  653.45            X                           
  654.90            X                           
  656.36            X                           
  658.07            X                         
  659.54            X                           
  662.51            X                           
  662.76            X                           
  663.01            X                           
  664.51    X    X                             
  666.26    X    X                              
  666.77    X    X                               
  667.27    X    X    X                        
  667.52           X                           
  667.77    X    X    X                           
  668.03            X                           
  668.28    X    X    X                           
  668.53    X    X    X                           
  668.79    X    X    X                           
  669.04    X    X    X                           
  669.55    X    X    X                           
  669.80    X    X    X                           
  670.06    X    X    X                           
  670.57    X    X                               
  672.10    X    X                   X    X       
  677.53            X                           
  681.46    X    X                    X    X       
  689.49    X    X                              
  689.76    X    X                               
  691.12    X    X                               
  691.39    X    X                               
  692.76    X    X                  X    X       
  693.03    X    X                    X    X       
  694.40    X    X                             
  694.67    X    X                               
  696.05    X    X                    X    X       
  697.71    X    X                               
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 !(cm
"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

  698.82    X    X                              
  699.10    X    X                               
  699.66    X    X                              
  700.78    X    X                    X    X       
  701.06    X    X                    X    X       
  702.46    X    X                             
  702.74    X    X                    X    X       
  703.87    X    X                    X    X       
  704.44    X    X                    X    X       
  706.14    X    X                   X    X      
  706.99    X    X                   X    X       
  707.85    X    X                    X    X       
  708.71    X    X                  X    X       
  709.57    X    X                   X    X       
  711.00    X    X                  X    X       
  711.29    X    X                  X    X       
  712.74    X    X                  X    X       
  714.19    X    X                 X    X       
  714.48    X    X                 X    X       
  715.94    X    X                   X    X       
  721.84    X    X                  X    X       
  723.03                       X    X       
  723.33    X    X                   X    X       
  724.52    X    X                  X    X       
  726.33    X    X                 X    X       
  738.48                        X    X       
  746.01                      X    X      
  747.60                         X    X       
  749.20                        X    X       
  750.48                         X    X       
  753.06                            X    X      
  755.33                        X    X       
  759.57        X        X                     
  790.32                          X    X      
  801.10              X                    
  820.83              X                   
  843.91               X            X    X       
  917.31                X                      
  918.75               X                       
  937.91                X    X       X    X       
  965.43              X                     
  979.13             X                      
  997.11                    X             
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 !(cm
"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

  998.39                       X               
  999.67                     X               
 1001.38                        X               
 1003.54                     X              
 1005.26                    X            
 1006.56                       X              
 1008.30                    X           
 1010.48                       X               
 1011.79                      X               
 1013.11                       X            
 1014.87                     X             
 1016.64                    X               
 1018.41                     X            
 1020.63                    X          
 1021.97                   X            
 1023.31                   X           
 1061.33                        X             
 1061.81                   X             
 1062.29                    X           
 1063.26                   X             
 1064.22                      X             
 1064.70                   X           
 1065.19                 X           
 1068.58                       X             
 1069.07                   X            
 1092.42             X        X    X     
 1103.17              X                  
 1114.64               X                   
 1122.60                X                     
 1131.20              X                     
 1133.91                        X    X     
 1228.23            X                 
 1238.11        X                       
 1251.36        X                               
 1285.48       X                           
 1310.18                  X              
 1315.47                  X              
 1330.98       X                       
 1334.61       X                          
 1340.20                  X             
 1367.25               X             
 1376.89               X              
 1381.21       X          X            
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 !(cm
"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

 1392.15                  X              
 1397.13                 X                
 1407.77                X               
 1419.15                 X            
 1427.23                X              
 1432.47                 X               
 1436.58                X             
 1468.83                X               
 1471.91                X               
 1476.25                X               
 1483.74                X               
 1493.22                X               
 1498.96                X               
 1502.17                X               
 1519.07                X               
 1521.05                X               
 1524.35                X               
 1541.77                X               
 1544.48                X               
 1547.20                X               
 1554.04                X               
 1556.10                X               
 1563.01                X               
 1569.29                X               
 1572.09                X               
 1586.26                X               
 1605.05                X               
 2181.49                                X   
 2182.40                                X   
 2183.31                                X   
 2184.21                                X   
 2185.12                                X   
 2186.03                                X   
 2186.94                                X   
 2187.85                                X   
 2189.67                                X   
 2190.58                                X   
 2191.50                                X   
 2192.41                                X   
 2193.33                                X   
 2194.24                                X   
 2196.99                                X   
 2202.51                                X   
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 !(cm
"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

 2203.44                                X   
 2204.36                                X   
 2206.21                                X   
 2207.14                                X   
 2387.18    X    X                             
 2388.15    X    X                             
 2389.13    X    X                             
 2390.11    X    X                             
 2391.09    X    X                             
 2392.07    X    X                             
 2393.05    X    X                             
 2394.03    X    X                             
 2395.01    X    X                             
 2419.83                       X         
 2456.48               X                      
 2492.08              X          X          
 2531.98               X                     
 2561.13               X           X           
 2603.66                X                     
 2607.89                   X               
 2611.07                          X        
 2616.38               X    X              
 2622.79             X    X               
 2632.47                 X        X        
 2637.87              X    X                
 2643.30                X    X              
 2648.75                X                 
 2656.42              X                
 2658.62            X          X        
           
   23.80            X    X             
   31.40              X    X             
   50.30    X    X    X    X                 
   52.80    X    X    X    X                 
   53.59    X    X    X                      
   54.40    X    X    X                   
   55.50    X    X    X                   
   57.29    X    X    X                   
   57.29    X    X    X                   
   57.29    X    X    X                   
   57.29    X    X    X                    
   57.29    X    X    X                  
   57.29    X    X    X                    
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 !(cm
"1
orGHz)  Temp1  Temp2   Strat  Surf  H2O   O3   CC  HGT  CO   

   89.00           X    X             
           
  150.00             X    X              
  183.31                  X             
  183.31                  X             
  183.31                  X             

 
 

5.4.2.1 Steps in the AIRS Final Product Algorithm 

The AIRS final product algorithm is comprised of a number of sequential steps listed 

below.  All steps start from the conditions found in the previous step, with appropriate 

computed uncertainty estimates, !X0  (see Section 5.4.9), unless otherwise noted. 

1. Use as a starting point the microwave product which agrees with the AMSU-A and 
HSB radiances (Rosenkranz, 2000).   This provides initial values of temperature and 
moisture profiles, surface skin temperature, microwave spectral emissivity, and liquid 
water, Wliq .  The initial value of Wliq  is held fixed in all subsequent retrieval steps.  
This is followed by a temperature profile retrieval using AMSU-A radiances as well as 
AIRS radiances for stratospheric sounding channels that never see clouds to update the 
temperature profile.  As part of this temperature profile retrieval, the surface skin 
temperature and microwave spectral emissivity is also updated.  The geophysical 
parameters retrieved in this step are called the MW/strat IR retrieval.  To the extent that 
HSB channels are present, the option exists to then perform a moisture profile retrieval 
using HSB channels. 

 
2. Determine initial cloud cleared radiances R̂i

1  (as in Section 5.2) using the atmospheric 
and surface parameters obtained in Step 1.  A cloud parameter retrieval is also 
performed to help determine which IR channels are not affected by clouds.  These 
cloud parameters are also taken as the final cloud parameters if the combined IR/MW 
retrieval is not used (see Step 16).  The AIRS channels used in the cloud clearing and 
cloud parameter retrieval steps are shown in Table 5.4.2.  Short wave window channels 
aid in cloud clearing during the day because clouds appear warm in shortwave window 
channel as a result of solar indication reflected by the clouds.  Clouds generally appear 
cold in the longwave window channels however.  Thus, cloudier cases can be more 
easily distinguished from colder cases.  For the same reason, the shortwave window 
channels are not used in the cloud parameter retrieval step because of the difficulty in 
the physical modeling of the effects of sunlight reflected by clouds.   

 
3. Determine the first guess IR surface parameters and temperature-moisture-ozone profile 

using R̂i
1  based on a regression step using 1524 AIRS channels (as in Section 5.3). 
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4. Produce an improved temperature profile and microwave spectral emissivity, starting 
from the surface and atmospheric parameters determined in step 3, using the AMSU-A 
channel radiances and AIRS channel radiances which do not see clouds.  The AIRS 
channels used in this step are listed in Table 5.4.2 under the column marked Strat.  The 
surface skin temperature is not updated as it is estimated better from AIRS radiances 
than can be determined from AMSU radiances.   This retrieval step is referred to as 
AMSU/strat IR. 

 
5. Determine updated cloud-cleared radiances, R̂i

2 , taking advantage of the geophysical 
parameters determined in Step 3. R̂i

2  is considerably more accurate than R̂i
1  because 

the surface and atmospheric parameters obtained from the AIRS regression step are 
more accurate than those from the microwave first product, especially the infra-red 
surface spectral properties which are not determined from the microwave retrieval. 

 
6. Perform a surface parameter retrieval using AIRS surface-sounding channels shown in    

Figure 1 along with AMSU channels 1, 2 and 15. This produces a new skin temperature, 
IR and microwave spectral emissivity, and IR spectral bi-directional reflectance. 

 
7.  Determine R̂i

3  and new cloud parameters using the geophysical parameters determined 
in Step 6. 

 
8.-11. Use R̂i

3  to sequentially determine surface parameters, temperature profile, humidity 
profile, and ozone profile using the appropriate channels shown in Figure 1.  AMSU-A 
temperature sounding channels 3-6 and 8-14 are also included in the determination of 
the temperature profile.  AIRS and AMSU channels used in the first pass temperature 
retrieval are listed in Table 5.4.2 in the column Temp1.  The results of these steps are 
called the first pass retrieved products. 

 
12. Update the temperature profile, using only AMSU-A radiances and AIRS channel 

radiances insensitive to clouds.  This profile is also used in the application of quality 
flags and is referred to as the test microwave only retrieval. 

 
13. Using the first pass retrieved products and updated temperature profile, determine R̂i

4 ,  
and the final cloud parameters. 

 
14. Repeat steps 8 and 9 using R̂i

4  to obtain the final product surface parameters and 
temperature profile.  The initial guess used in the second pass surface parameter and 
temperature profile retrievals is identical to that of the first pass but all other parameters 
are updated, such as the clear column radiances, moisture profile, etc.  The channel 
noise covariance matrix is also updated to account for better estimates of the other 
parameters.  In addition, channels in the water vapor band which are highly sensitive to 
lower tropospheric water vapor are included in the final temperature profile step (but 
not the first pass) because an accurate moisture profile has now been retrieved.  These 
channels are indicated in the AIRS channels used in the second pass temperature 
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retrieval under the column Temp2.  The moisture profile and ozone profile retrieval 
steps are not repeated, as no appreciable improvement in parameters resulted from 
further retrieval steps.  The geophysical parameters retrieved from this step and the 
following steps are called the combined IR/MW retrieval. 

 
15. Determine the CO profile using channels listed under CO in Table 5.4.2. 
 
16. Determine whether products derived in Steps 1 and 2 (MW/strat IR retrieval) or 13 and  
 14 (IR/MW retrieval) should be reported.   Apply  quality  control  flags to all retrieved 
  parameters. 
 
17. Compute OLR  and  clear sky OLR  using  the appropriate state,  either  from  Step 14 
 geophysical  parameters  and   Step 13  cloud  parameters,  or  Step 1  geophysical  
 parameters and Step 2 cloud parameters. 

 
5.4.3 General Iterative Least Squares Solution 

An iterative approach is used to linearize the radiative transfer equation about the nth 

iterative parameters n 1
X

+

! .  The iterative retrieval process described here is different  

from the use of different passes in the determination of  η.  The values of R̂i  used in the  

iterative retrieval loop are held fixed in a given pass. The n+1th iterative estimate of X!  

is expanded according to  

J J
n 1 n j 0 n

j n j j
j 1 j 1

X X F A X F A+

= =

= + ! = +" "! ! ! ! !         5.4.1  

 
where the columns of F represent a set of functions, 0

X!  is the initial guess, and Aj
n  are 

corresponding coefficients given by 

Aj
n
= Aj

n!1
+ "Aj

n            5.4.2 
    

which together with 0
X!  determine the solution.  A solution is found that attempts to 

minimize the residuals !"i
n  weighted inversely with respect to expected noise levels for 
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the channels used to determine Aj .   The residual for channel i is defined by  

 !"i
n
= R̂i # Ri

n( ) dB
dT

$
%&

'
()"in

#1
          5.4.3 

 
where R̂i  is the reconstructed clear column radiance, Ri

n  is the radiance computed from 

the nth iterative parameters, and !i
n  is the brightness temperature computed from the nth 

iterative parameters.  The nth iteration residual for channel i is attributed to errors in the 

coefficients, !Aj
n , and to noise effects, i.e.,  

 n n n
i ij j i

j

S A!" = # +"$ !            5.4.4 

where Sij  is an element of the sensitivity matrix or Jacobian given by 

 Sij
n
=
!Ri

n

!Aj
n

dB

dT

"
#$

%
&'(in

)1
            5.4.5 

The noise factor 
 
!!i  for a given case has two parts:  errors in observed cloud-cleared 

radiances !"̂i , which are affected by instrumental noise and cloud clearing errors, and 

computational noise !"i
c . 

In Susskind, et al., (2003), dealing with simulated data, a perfect knowledge of physics is 

assumed, i.e., if all the variables were known exactly, the exact noise free radiances are 

computed. Nevertheless, the transmittances depend on the variables to be solved for. 

Therefore, computational noise exists. Computational noise, arising from errors such as 

too low (high) an estimate of atmospheric water vapor, produce noise that is correlated 

between channels. Instrumental noise is uncorrelated from channel-to-channel but cloud-
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clearing errors are correlated from channel-to-channel.   Therefore, the channel noise 

covariance matrix has both diagonal and off-diagonal matrix elements. 

Each retrieval step uses an appropriate channel noise covariance matrix  

 ( )
i j

11
ji

ij ij ij

dBdBˆM M M
dT dT

!!

" "

# $# $
= + % &% &

' ( ' (
!                  5.4.6 

where M̂  is defined in Equation 5.2.25 and  !M is discussed later.  The values of Mij  

depend on the pass.   A general form of the solution to this problem is given by 

 
1

n n n n n n n n
A S WS H S W M

!
" #$ $% = + %& = %&
' (

     5.4.7 

 
where !An  is the vector of updates to the expansion coefficients, !"n  is the vector of 

channel residuals, W is a shorthand for M!1 , and Hn  is a stabilizing or damping matrix 

used to constrain the otherwise ill-conditioned inverse problem. 

Hanel, et al., (1992) and Rodgers (1976) have reviewed several methods of constraining 

the ill-conditioned inverse problem. In the minimum variance approach (Rodgers, 1976), 

H is taken to be the inverse of the a priori error covariance. If the statistics of both the 

measurement and a priori are Gaussian, the maximum likelihood solution is obtained. If 

the a priori  covariance is taken to be H =γI , the maximum entropy solution is obtained. 

Other forms of H include the first or second derivative formulations (Twomey, 1963) that 

force a smoothness constraint on the solution.  These formulations all weight the a-priori 

information into the final retrieved state to some extent.  The solution can also be 

constrained by the relaxation method (Chahine, 1968) and by the Backus and Gilbert 

(1970) method.    

The minimum variance and maximum likelihood solutions are often considered to be 

"optimal." However, if the a priori error covariance is not known or estimated 

incorrectly, the solution is sub-optimal. If the a priori errors are underestimated, the 

solution is over constrained. Potentially, this creates biases in the retrievals. The biases 
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mask small trends in the retrieved data that scientifically important. The approach 

described here attempts to keep the effects of instrument noise at a tolerable level without 

assumptions regarding the a priori data error covariance. 

5.4.4 Transformation of Variables 

As a consequence of stabilizing the ill-conditioned solution, the addition of H also has the 

effect of damping the potential information content of the radiances, reducing the values 

of ΔA.  The variables are transformed to apply a constraint such that the well-determined 

components of the variables are solved for without appreciable damping.  

If a different set of functions were chosen which are linear combinations of original 

functions, i.e.,  

 
 G = FU             5.4.8 

where U is a unitary transformation U !U = 1( ) , and the solution was expanded in the 

same way as in Equation 5.4.1 with unknowns !Bn , one obtains the equation 

 X
n+1

= X
n
+G!B

n
= X

n
+ FU!B

n
= X

n
+ F!A

n                   5.4.9 

In the new basis set, the transformed Jacobian is given by 

 T
n
=

!R

!Bn
dB

dT

"
#$

%
&'(

)1
= S

n
U                     5.4.10 

The constrained solution, as given by Equation 5.4.7, in terms of this new set of 

functions, is given by 

 !B
n
= T'

n
WT

n
+ H( )

"1

T'
n
W !#

n
" $#

n"1( ) = U'!An                 5.4.11 

An additional term !"n#1  has been included in Equation 5.4.11, and represents an 

iterative background correction term that is zero in the first iteration (it is discussed 

further below).   
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U
n  is selected such that !T

n
W
n
T
n
= !U !S WSU is diagonal with real non-negative 

eigenvalues ! j
n .  The inverse of each eigenvalue is the variance in that eigenmode.  The 

total variance is the trace of U !S WSU( )
"1 .  The unconstrained solution (H=0), with no 

background correction !"
n#1

= 0( ) ,  is then given by 

 !Bj
n(0) = " j

n( )
#1

Tkj
n

k,i

$ Wk,i !%i
n
= "

n( )
j

#1
m j
n
!%

n                5.4.12 

where mj
n  is the vector corresponding to the jth row of !T W .   

In general, the ill-conditioned cases arise from those components of G having low 

information content and small eigenvalues (high variance), indicating that those 

components are not well determined from the observations alone and need damping.  

Components with large eigenvalues are quite well determined and require little or no 

damping to achieve a stable solution.  If H is chosen to be a diagonal matrix with values 

!" , the constrained solution with no background correction term is given by 

 ( ) ( )
1

n n n n n n
j j j jB m

!

" "# = # + "# "$                   5.4.13  

The coefficients ( )n n
j jB! !"  are therefore damped from the unconstrained coefficients 

!Bj
n(0)  by 

 ( )
n
jn n n n n

j j j j jn n
j j

B B (0) B (0)
!

" "! = " =# "

! + "!
               5.4.14 

where ! j  can be thought of as a filter or damping function.  This formulation is the same 

as the maximum entropy solution, applied in transformed space, if !"  is set equal to a 

constant.  However, instead of using a single constant !"  for all eigen functions, a 

different value is computed for each eigenfunction.  For well-determined eigenmodes, 
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!"  is set equal to 0. This has the consequences of giving no weight to the a priori.  For 

modes that are not well determined by the measurements, !"  is determined in such a 

way as to limit the propagation of instrument noise to a pre-specified amount.  The 

determination of !" j
n  is discussed in detail in the next section. 

5.4.5 Application of Constraint 
The residual !"i

n  can be thought of as having both a signal and a noise component, i.e., 

  signaln
i ii

!" = !" +"!                    5.4.15 

The component of !Bj  that arises from the propagation of channel noises, 
 
!!i , is given  

by 

  ( ) ( )
1

n n n n n
j j j jB T W .

!
" #$% & = & + '& (
) *

! !                   5.4.16 

A statistical estimate of n
jB!
!  over an ensemble of profiles can be obtained by 

 

( )

( )
( )

11/ 2 1/ 2n n n n n
j j j jjjj

1/ 2
n

1/ 2j n n
j jn n

j j

B B B T W W T
!"

!

# $ # $" " "% = % % = & + '& (() *) *

&
= =+ &
& + '&

! ! ! ! !

                           5.4.17 

because 1
M W

!
"## = =! ! .  This formulation of !"!  is similar to that given by Rodgers 

(1990).  If !" j
n  were zero, n

jB!
!  becomes large if ! j

n  is small. !" j
n  is selected such that 

n
jB!
!  is less than or equal to a threshold value.  If n

jB!
!  is allowed to be no more than 

!BMAX , then !" j  is set to zero if 2
j MAXB!" # $  and 

1/ 2
j MAX j

j
MAX

B

B

! "# !
$! =

#
 otherwise.  

For example, if !BMAX = 0.5, the resultant value of !" j  is set equal to 0 for ! j " 4 , 
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and if !BMAX = 1,  !" j  is set equal to 0 for ! j " 1 , corresponding to damping (non-zero 

values of !" j )  for fewer eigen values.   

Constraints are only applied to those eigenfunctions with lower information content than 

the critical value corresponding to !BMAX .  The value of !BMAX  has been determined 

empirically for each type of retrieval.  In Version 4.0, !BMAX  = 1 in the AMSU-A 

temperature retrieval step, !BMAX = 0.35  in the AIRS surface temperature retrieval step, 

!BMAX = 1.2 and 1.0  in the AIRS temperature and moisture profile retrieval steps  

respectively, and !BMAX = 4  in the ozone profile retrieval step.  The computation of all 

matrix elements shown above, including !  and !" , is done in each iteration. 

5.4.6 Formulation of the Background Term 

The need for an iterative process arises because the radiative transfer equation is not 

linear.  In every iteration, !i
n
,S
n
,U
n  and !n  are each recomputed.  If the solutions were 

completely linear, and no damping was applied, then 

 !"
n+1
(0) # !"

n
$ S

n
U
n
!B

n
(0)                   5.4.18 

Under these conditions, !Bn+1(0)  would be zero because !Bn(0)  already matched the 

residuals and !"n+1  would be zero. 

Equation (5.4.18) is not exact, because on the one hand, !n+1(0)  is not given exactly by 

!
n
+S

n
U
n
"B

n , and also because !Bj
n
" !Bj

n(0) .  As a result of applying !Bj
n  rather 

than !Bj
n(0) , which would have minimized the radiance residuals, 

  !"n+1 # !"n+1(0) + Sn Un !Bn(0) $ !Bn%
&

'
(
= !"n+1(0) + )"n               5.4.19 

In Equation (5.4.19), !"n+1(0)  represents the portion of !"n+1  that is due to effects of 

non-linearity on the solution, while !"n  represents the residual portion of !"n+1  due to 
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the effects of damping in iteration n.  The second term is zero for undamped modes and 

increases in significance with increased damping.  This term is also zero for all modes in 

the first iteration.   

It is desirable to include the effects of non-linearity in the iterative procedure used in the 

determination of !Bn .  Therefore, the background term to be used in Equation 5.4.12 is 

given by 

 !"n = Sn Un #Bn(0) $ #Bn%
&

'
(

 

and we solve for !Bj
n+1  according to  

 !Bj
n+1

= " j
n+1

+ !" j
n+1( )

#1
$U n+1 $S n+1Wn+1 !%n+1 # &%n'

(
)
*  

  = !
n+1

"Bj
n+1(0) # $ j

n+1
+ "$ j

n+1( )
#1

                 5.4.20 

  ! "U n+1 "S n+1Wn+1SnUn #Bj
n(0) $ #Bj

n( )%
&

'
(

 

where!Bj
n  is the value of !Bj  which was applied in iteration n. Inclusion of the 

background term in Equation 5.4.20 ensures second order convergence along the lines 

discussed by Rodgers (1976) with regard to treatment of the a priori term. 

5.4.7 Convergence Criteria 

Solving Equation 5.4.20 finds solutions to the radiative transfer equations which 

minimize weighted residuals of observed and computed brightness temperatures, 

corrected for the background term.  To test convergence of the solution, the weighted 

residual is monitored  

 R = !" # $"( )% %V V !" # $"( )&
'(

)
*+

1/2

                5.4.21 
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where the weight matrix V accounts for noise effects on the channel residuals, as well as 

the relative information content of the channels with regard to the variables being solved 

for.  For example, if a channel (or linear combination of channels) carries little 

information content in terms of signal-to-noise, it is given little weight in the estimation 

of the residual in Equation 5.4.21.  An appropriate choice of V, expressing the 

information content of the channels is 

 ( ) ( )
1

j jV T W
!

"= # + $#                 5.4.22 

in which case we obtain 

 [ ]
1/ 2

R B B!= " "                  5.4.23 

As shown in Equation 5.4.23, a reasonable way to determine if the solution has 

converged, in terms of weighted residuals, is to see if the solution converges in terms of 

the iterative changes in the solution itself.  Initially, we set !Bj = 0  if 1
j 0.05! < , that is, 

coefficients of very heavily damped components with little information content are given 

no weight.  The solution is said to have converged when the RMS value of !Bj
n  is less 

than 10% of the RMS value of n
B! !  for all components not set equal to zero.  The 

iterative procedure is also terminated if the RMS value of !Bj
n  is not less than 75% of 

!Bj
n+1  for the non-zero components.  This indicates the solution is not converging 

rapidly enough and is responding primarily to unmodeled noise.  The iterative procedure, 

which usually converges in 3 iterations, is carried out analogously for all retrieval steps. 

5.4.8 Retrieval Noise Covariance Matrix 

The matrix W used in Equation 5.4.11 is the inverse of the retrieval noise covariance 

matrix, M W !M
"1( ) .   The matrix M is given by a sum of two terms 

 ( )
i j

11
ji

ij ij ij

dBdBˆM M M
dT dT

!!

" "

# $# $
= + % &% &

' ( ' (
!                 5.4.24 
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where M̂  represents the error covariance in the reconstructed cloud-cleared radiances 

and  !M  represents the error covariance in the radiances computed from the estimated 

profile, as a result of errors in parameters assumed known (being held fixed) in a retrieval 

step.   M̂  is given in Equation 5.2.35. 

The computational noise covariance matrix  !M  is designed to account for errors in the 

computed cloud free radiance expected for a given state, Ri
n , resulting from errors in the 

geophysical parameters held fixed in the retrieval step.   !M is modeled according to 

( )
i i

2 2 22
physn 2i i i

ii j ii
j j

R dB dB
M X (0.1) M

X dT dT! !

" #$ % & % &
= ' + +() * + , + ,$ - . - .) */ 0

!               5.4.25 

and 

 
2ni i

ii j
j j j

R R
M X

X X

!
!

" "
= #$

" "
!                    5.4.26 

where !Ri
!Xj

 represents the derivative of Ri
n  with respect to parameter Xj  and !Xj

n  is 

the estimated uncertainty in parameter Xj  in iteration n.  The parameters used for Xj  in 

modeling  
!M  represent uncertainties in surface skin temperature, surface emissivity, 

surface reflectance, temperature profile, and water vapor and ozone profiles.  The 

derivatives !Ri

!Xj
 are computed empirically for those variables held fixed in a given 

retrieval step.  The term 0.1 in Equation 5.4.25 is taken to represent additional unmodeled 

errors.  Details of how these uncertainties are computed for each pass are given later. 
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5.4.9 Variable Channel Selection 
5.4.9.1 Surface Parameter Retrieval 

Channel radiances depend on several unknown surface parameters: the surface skin 

temperature (Ts ) ; the spectral emissivity, !(") , and spectral bi-directional reflectance 

!(") ; and the microwave spectral emissivity !m(") .  The surface parameter retrieval step 

uses 25 infrared window channels, 5 AMSU-A window channels, and 1 HSB window 

channel included in the spectral ranges shown in Table 5.4.1 and listed in the column 

marked surf in Table 5.4.2.    The AIRS channels used in the surface parameter retrieval 

step are indicated by the orange stars in Figure 5.4.1.  Inclusion of the microwave 

window channels stabilizes the surface parameter retrieval and also provides one piece of 

information about modifying the microwave spectral emissivity provided by the 

microwave product (generated in step 1).  

In the surface parameter retrieval, infrared window channels are selected from both long-

wave and short-wave infrared window regions, generally avoiding even weak absorption 

lines. For window channels, the transmittance at the surface, !(ps ) , is generally close to 

unity. Although the opacity of infrared window channels is small, there is absorption and 

emission due to the water vapor continuum and the nitrogen continuum, both absorbing 

primarily in the lowest portions of the atmosphere. Therefore, the radiance in window 

regions depends not only on Ts, !("),  and !(") , but also on the temperature and moisture 

in the boundary layer. The radiances of window channels do not depend appreciably on 

temperature and moisture above the boundary layer. To account for the additional 

dependencies in the surface parameter retrieval, two additional variables can in principle 

be solved for by scaling the total precipitable water (Δn W) and shifting the air 

temperature (!TAIR ) .  We do not do this however because it is felt that the regression 

step produces accurate enough boundary layer temperature and moisture profiles for use 

without further modification.  A few channels centered on weak water vapor absorption 

lines are included in the surface parameter retrieved in the 3.7 µm window which are 

sensitive to water vapor absorption as well as reflected solar radiation. The reflected solar 

radiation causes the surface to appear hotter than in other window regions not affected by 
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reflected solar radiation. Inclusion of these channels helps distinguish between changes in 

 
T

s
, !, and "  during the day.  Several of the shortwave window channels in the surface 

parameter retrieval are also used later in the moisture profile retrieval.  They are 

particularly sensitive to boundary layer water vapor during the day,  and improve 

retrieved boundary layer water vapor given an accurate value of ! . 

A total of five variables are solved for in the surface parameter retrieval for daytime cases 

and four for nighttime cases. The perturbation functions include a perturbation toTs , a 

perturbation to each of 2 infrared spectral emissivity functions, 1 spectral bi-directional 

reflectance functions (during the day), and 1 piece of information about a perturbation to 

the microwave spectral emissivity. The values of the perturbations are selected to give 

comparable values of the S matrix for a typical case.  If all perturbation functions Fj  

were half as large, Sij  would be half as large for each mode, and the solution vector  

!Aj  would be twice as large. The perturbations are large enough to produce significant S 

matrix elements, but not so large as to produce an appreciable non-linear response.  

The Jacobian or sensitivity matrix Sn  is computed every iteration. The partial derivative 

of channel radiance with respect to the coefficients of each of the above functions are 

computed empirically as follows:  (1) Compute the ith channel radiance  

using the nth iteration parameters (i.e., n n n
sT , ( ), ( ),! " # "  etc.)  (2) Compute the i

th 
channel 

transmittance (if necessary) and radiance using the nth iteration parameters but setting the 

coefficient (!Aij)  of perturbation function Fj  to unity.  (3) The sensitivity Sij , related to 

the change in channel radiance per unit change in coefficient !Aj , is given by the 

difference in radiances computed in steps (1) and (2), divided by dB / dT( )
!i
n .  The 

sensitivity or partial derivative of radiance with respect to surface temperature, spectral 

emissivity, and surface bi-directional reflectance can be computed theoretically by 

differentiating the clear column radiative transfer equation because the transmittance 

functions do not depend on these parameters.  
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After the sensitivity matrix is computed, the inversion procedure described earlier 

proceeds. In the surface temperature retrieval, as well as in all other retrieval steps, an 

empirical term, Mij
phys , which is of unmodelled component noise, is included in Equation 

5.4.26.  Mij
phys  will be discussed in detail later.  The retrieved values of Ts , !("),  and 

ρ(ν) are held constant and used in the subsequent iterative steps for temperature, 

moisture, and ozone profile retrievals. 

5.4.9.2 Temperature Profile Retrieval 

The temperature profile retrieval problem is set up and solved in a manner completely 

analogous to the surface parameter retrieval. The solution for the retrieved temperature 

profile is written in the form  

 
J

n 0 n 0
j j

j 1

T (p ) T (p ) F (p )A T (p ) FA
=

= + = +!! ! ! !                 5.4.27 

where  !  ranges over the number of levels used to compute channel transmittances and 

radiances, and j ranges over the number of functions that are solved for, currently set to 

23. The functions in the surface parameter retrieval are taken as discrete changes in 

different surface or atmospheric parameters. Following the approach of the surface 

parameter retrieval, the functions Fj  are selected as localized functions of pressure, 

corresponding to changes in temperature primarily in a layer from p j   
to p j!1 . Use of 

localized functions is convenient for computing the S matrix and makes the problem 

more nearly linear. The methodology discussed previously does not require the functions 

to be orthogonal. In order for the solution to be continuous, the functions chosen are 

trapezoids, with a value of 0.5K between p j  and p j!1  and falling linearly in log p to 0K 

at p j+1  and p j!2 .   The highest and lowest functions in the atmosphere are special cases,  

with values of 1K at the upper or lower limit of the atmosphere (0.016 mb or the surface), 

0.5K at the adjacent pressure, and followed by 0 K at the next pressure level.  

The Jacobian matrix is computed exactly as in the surface parameter retrieval.  In any 

iteration, transmittances and radiances are computed for the temperature sounding 
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channels using Tn(p)  and Tn(p) + Fj(p) , where Fj(p)  is one of the trapezoids, and the 

Jacobian is obtained empirically according to  

 Sij
n
= Ri T

n(p) + Fj(p)( ) ! Ri Tn(p)( )"
#

$
%
dBi

dT

&
'(

)
*+,i

!1
              5.4.28 

It can be shown that for an opaque temperature sounding channel, a shift of the entire 

atmospheric temperature profile by 1K will cause roughly a 1K change in brightness 

temperature (Susskind, et al., 1984). Moreover, a localized change of 1K in an 

atmospheric layer containing the non-zero part of the channel's weighting function 

likewise results in a 1 K change in brightness temperature. This brightness temperature 

change decreases as the layer becomes thinner than the weighting function. To insure 

sensitivity of at least one sounding channel to changes in the layer (or trapezoid) 

temperatures, layers are selected to be sufficiently coarse as to have an element of the S 

matrix of at least 0.2 for the layer. While the Jacobian is profile dependent, the layer 

structure used to define the trapezoid functions is held fixed for all soundings. They are 

selected so as to be neither too thin, resulting in lack of sensitivity, nor too coarse, 

resulting in lack of resolution. The pressure boundaries for the 23 functions used are 

shown in Table 5.4.3. According to Equation 5.4.28, the only structure in the solution 

with finer spacing than these pressure boundary levels must come from the initial guess. 

The procedure of transformation of variables and use of damping functions designed to 

stabilize the solution, as discussed earlier, further decreases the ability of the solution to 

discern fine structure not contained in the information content matrix !S WS .   This 

damping is profile dependent. 

In the first pass temperature profile retrieval, channels are selected which are relatively 

insensitive to the ozone and water vapor distribution.  An estimate of these variables is 

given by regression, but this is not considered to be of high enough accuracy to allow for 

use of channels highly sensitive to these parameters in the first pass physical temperature 

profile retrieval step.  The temperature-sounding channels used are generally selected 

between absorption lines to optimize the channel weighting functions (Kaplan, et al., 

1977).  Along the lines of Kaplan, et al., (1977) and outlined in Table 5.4.1, the retrieval 
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uses 50 channels in the 15 µm CO2 band.  These include the Q-branch near 666 cm-1    to 

sound the mid to upper stratosphere and channels between CO2 absorption lines to sound 

through the upper troposphere.  In addition, 9 channels in the CO2  4.2 µm band R branch 

in the vicinity of 2388 cm-1 are used to sound the mid- to lower troposphere.  It was found 

that the R branch channels at frequencies less than 2386 cm-1 were affected significantly 

by non-LTE during the day and they are currently not used in the retrieval process.  There 

are also 11 AMSU-A channels included (AMSU A channels 3-6 and 8-14 from Table 

2.3) in the temperature profile retrieval. AMSU A channel 7 contains excessive noise and 

is not used in any retrieval step.   All channels used in the first pass temperature profile 

retrieval step are indicated in Table 5.4.2 in the column Temp 1.  The AIRS channels are 

marked by red stars in Figure 5.4.1. 

Table 5.4.3. Trapezoid or Layer Endpoints 
Temperature Retrieval Moisture Retrieval Ozone Retrieval CO Retrieval 
 
 0.016 0.016 0.016 0.016 
 0.714 170.1 20.92 300.0 
 1.297 272.9 51.53 407.5 
 2.701 314.1 71.54 575.7 
 4.077 343.6 103.0 surface 
 8.165 407.5 142.2 
 16.43 515.7 300.0 
 23.45 617.5 surface 
 39.26 706.6 
 56.13 852.8 
 71.54 surface 
 96.11 
 125.6 
 160.5 
 212.0 
 272.9 
 343.6 
 424.5 
 490.6 
 596.3 
 661.2 
 729.9 
 878.6 
 surface 
*If the lowest layer is less than 50 mb thick in any step, it is combined with the layer 
above. 
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Errors in the estimate of the water vapor profile, ozone profile, and surface parameters 

used to compute expected radiances in the temperature profile retrieval step produce 

errors in the computed brightness temperature for a given channel, as well as correlated 

brightness temperatures errors in radiances computed in other temperature sounding 

channels. These errors are accounted for in the noise covariance matrix 
 
!Mi  given in 

Equations 5.4.25 and 5.4.26. 

Incorporation of these terms into the noise covariance matrix has the effect of making 

channels sensitive to water vapor absorption, ozone absorption, and/or the surface 

temperature appear noisier than the value given by their instrumental noise.  It should be 

noted that in general, the mid-tropospheric sounding 15 µm channels, which are sensitive 

to water vapor absorption, will be "noisier" for humid cases than for very dry ones, while 

uncertainty in water vapor profile will have a smaller effect on the 4.2-µm radiances.  

Conversely, 4.2-µm channels are “noisier” during the day than at night due to effects of 

uncertainty in the surface bi-directional reflectance.  

The estimated errors in surface parameters and temperature profile are included in the 

noise covariance matrix in the subsequent steps of water vapor profile retrieval and ozone 

profile retrieval, and the estimated error in water vapor profile is also included in the 

ozone profile retrieval, but not in the water vapor retrieval because water vapor is the 

variable being solved for.  Effects of estimated errors in the temperature profile are also 

included in these subsequent steps.  

The temperature profile retrieval step described above (step 9) is done after the 

AMSU/strat IR temperature profile retrieval (step 5) subsequent to the regression (step 4) 

has been completed. That AMSU/strat IR temperature retrieval step is analogous to the 

temperature retrieval step described above, but uses only AMSU-A channels and 

stratospheric AIRS temperature sounding channels which do not see clouds.  The 

AMSU/strat IR temperature profile retrieval step solves for one piece of information 

about the microwave spectral emissivity as well as coefficients of 13 temperature 

perturbation functions.  Less functions are used in the AMSU-A temperature retrieval 

step because there is considerably less inherent vertical resolution in the troposphere 
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when only AMSU-A channels are used with the stratospheric sounding AIRS channels, 

as compared to using tropospheric AIRS temperature sounding channels as well. 

5.4.9.3 Water Vapor Profile Retrieval 

Unlike surface parameter and temperature profile retrievals, the water vapor profile 

retrieval problem is highly non-linear.  A change in water vapor abundance in a given 

level affects the transmittance in that layer as well as the atmospheric emission and 

absorption at all lower levels in a complex manner.  The solution for the retrieved 

moisture profile is expressed as 

J
n 0 n

j j
j 1

q (p ) q (p ) 1 F (p )A ,
=

! "
= + #$ %

$ %& '
! ! !                   5.4.29 

 

where  !  ranges over the 100 levels used to compute transmittances and radiances, and j 

ranges over J solution functions. The functions jF (p )!  are expressed as trapezoids with a 

value of 0.05 in coarse atmospheric layers, in a manner analogous to that described above 

for the temperature profile retrieval.  The endpoints of the 10 trapezoids used in the 

moisture profile retrieval are included in Table 5.4.3.  The highest trapezoid has a value 

of 0.05 at 170.1 mb and 272.9 mb and 0 at .016 mb and 314.1 mb.  The lowest function is 

comprised of two straight lines, with a value at the surface and 852.8 mb of 0.05, and a 

value of 0 at 706.6 mb.  

In the moisture retrieval, we primarily use channels between absorption lines in the 6.3 

µm water vapor band that are sensitive to humidity throughout the troposphere. These 

channels provide sharper weighting functions (more localized absorption) than centers of 

strong lines and make the problem more linear.  In addition, some channels are used on 

the peaks of the strongest absorption features in the 6.7-µm band, which are sensitive to 

stratospheric water vapor.  One channel is also included in the 11-µm window which is 

sensitive to the water vapor continuum and improves the sounding capability for lower 

tropospheric humidity. Channels in the 3.7-µm window provide improved sensitivity to 

low level moisture during the day as discussed previously.  The AIRS channels used in 

the water vapor retrieval step are shown by green stars in Figure 5.4.1 and indicated 
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under H2O in Table 5.4.2.  The S matrix is computed empirically exactly as in the 

temperature profile retrieval. The parameters determined from the surface and 

temperature profile retrievals are kept fixed in the calculations.  

In constructing the noise covariance matrix, terms for uncertainties in surface properties 

are included, as in the temperature profile retrieval, as well as a term representing 

radiance uncertainties due to a perturbation of the entire temperature profile, as done in 

the noise covariance matrix used in the determination of η (Equation 5.2.9).   These terms 

will be discussed in Section 5.5. 

5.4.9.4 Ozone Profile Retrieval 

The solution for the ozone profile retrieval has the same form as that for the moisture 

profile retrieval.  The ozone profile retrieval uses 7 trapezoid functions with values of 

0.05, as in the water vapor retrieval. The end points of the trapezoids are included in 

Table 5.4.3. The same steps outlined in the previous section are used to compute the 

Jacobian.  It is critical to solve for water vapor before ozone because ozone channels are 

sensitive to absorption by boundary layer water vapor. There are 26 channels in the 9.6 

µm ozone band selected for the ozone retrieval.  These channels are shown by the blue 

stars in Figure 5.4.1 and indicated in Table 5.4.2 in the column marked O3.  Uncertainties 

in surface parameters, temperature profile, and water vapor profile are included in the 

ozone noise covariance matrix.  

5.4.9.5 CO Profile Retrieval 

The retrieval of CO profile is totally analogous to that of the other constituents.  20 CO 

sounding channels are used in the retrieval process, 4 perturbation functions are used, and 

!Bmax  is set equal to 1.7.  The channels used are indicated in Table 5.4.2 under the 

column CO and the endpoints of the trapezoids are shown in Table 5.4.3.  The regression 

step does not generate an initial guess CO profile.  A fixed zonally dependent mixing 

ratio is used as the CO initial guess. 
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5.4.10 Estimation of State Errors and their Effect on the Channel Noise 
Covariance Matrix 

Equations 5.2.9 and 5.4.26 contain terms such as 
!Ri

!T(p)
"T(p) , representing the 

contribution of errors in computed radiances resulting from expected errors in state 

parameters used in a given pass and step.  These errors are case dependent and can be 

estimated by propagating expected errors through the retrieval system.  In addition to 

being used in the generation of the channel noise covariance matrix, the expected state 

errors are useful in their own right and are reported along with the retrieved state.  The 

following sections show how the expected state errors and their contributions to 

Equations 5.2.9 and 5.4.26 are computed. 

5.4.10.1 Propagation of Errors 

In any iteration, the estimate of a parameter, such as  T(p)m , is given by 

L
m 0 mT(p) T(p) F Aj j j

1

0 mT(p) (FUB )j j,1

= + !

=

= +

! !
!             5.4.30 

where j is a discrete pressure level.  There are three contributions to the expected error 

!T(p)j
m .  The first contribution comes from the null space error, arising from the error of 

the first guess in the space outside that of the L functions used to expand the solution.  

The second component arises from errors in the coefficients Bm .  The last contribution 

arises from the damping of the solution in which (1-! ) of the first guess (or previous 

iteration) is believed for each eigen function,  G=FU. 

Equations 5.2.9 and 5.4.26 contain radiance uncertainties resulting from the square of the 

expected error in state parameter Xj
m , !Xj

m2 , which can be expressed in terms of errors 

in the expansion coefficients A according to 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 153 

!Xj
m2

= !Xj
N2

+ Fjk
2
!Ak
m2

k
"       5.4.31 

where !Xj
N  is the null space error and !Am  is the error in the coefficients Am  used to 

represent Xm .   Errors in A arise both from errors in the B coefficients and errors in the 

damped portion of the m-1 iterative guess.  In every step in the retrieval process, we 

begin with parameters X0  having an uncertainty !Xj
0 .  The uncertainty of the 

microwave product first guess is specified based on expected errors, as is the null space 

error.    Given !X0 , !A0  can be solved for according to  

( )

( ) ( )

1/ 2

0
2

2 2 1 2 0 N
k

1/ 2
1 2

2 2 2 0

A (F F ) F X X

F F F X

!

!

" #
$ $% = % ! %& '

( )

" #
$ $= %& '

( )

!

             5.4.32  

In a given iteration, we can express !A
k
m  according to  

2

1/ 2
2 2m

m m m 1 NA U U (1 ) U A Ak k k j j k
n j

! "# $ # $% &'( ) *( )% &+ = , - +, *' + + +,( ) ( )% &( ). / 0/ 0% &1 2

!
! ! ! ! ! !

!

   5.4.33 

where 
m

m

!

"

!

!

 represents the predicted error in m
B
!

 due to noise propagation, and the 

second term represents the portions of the errors  m 1
B

!
"
!

 of the previous iterative profile 

which are believed in the current iteration.  Given !A
k
m  from Equation 5.4.33 for the 

final iterative step, we compute the square of the corresponding profile error to be used in 

Equations 5.2.9 and 5.4.26 according to Equation 5.4.31.  This term is carried to the next 

retrieval step and used in Equation 5.4.32 to give !A
k
0  which is in turn used in Equation 

5.4.33 to generate the uncertainty in parameter X for use in subsequent steps. 
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For moisture and ozone profile, the form of the expansion is slightly different (see 

Equation 5.4.29) and we write 

2 2
N mq (p) q (p) 2 m2F (P) Ak kq q k

! " ! "# #$ % $ %= + #&
$ % $ %
' ( ' (

          5.4.34 

Surface spectral emissivity and bi-directional reflectance are analogous to temperature 

profile, as is skin temperature, in which case F is a number.  The liquid water profile 

comes from the microwave product and is not iterated.  We assume an error estimate of 

10% of the liquid water profile.  In addition, if the total liquid water is less than 0.01 

g/cm2, we consider the possibility that liquid water may have been missed due to an error 

in the water vapor microwave solution.  For these low liquid water solutions, an 

alternative error estimate of (2*RH-1)*0.05*q, where RH is the relative humidity and q is 

the layer water vapor in mg/cm2, is considered and used if it is larger than 20% of the 

liquid water.  The null space temperature error is taken as 0.1K above 40 mb and below 

200 mb, increasing linearly in log p to 0.2K at 100 mb.  The null space error in percent is 

taken as 5% for water vapor and ozone above 40 mb and beneath 200 mb, with values of 

10% and 50% at 100 mb for water vapor and ozone respectively. 

Equation 5.4.33 is case dependent through the parameters !
!

 and !
!

 which depend 

both on the S matrix, and more significantly on the M  matrix. M  contains contributions 

from clouds, M̂ , and parameter uncertainty  
!M .  The uncertainties in parameters 

determined from Equations 5.4.33, 5.4.31, and 5.4.34 in turn are used in the computation 

of the matrices  !M  (Equation 5.4.29) and N  (Equation 5.2.9). 

5.4.10.2 Contribution of State Errors to the Channel Noise Covariance Matrix 

Equations 5.4.31 and 5.4.34 give the magnitude of the estimated error in each parameter 

but contain no information about sign.  If we assume all !X(p)  are of the same sign, we 

would overestimate the effect of the uncertainty on that parameter on the computed 

radiances, because retrieval process errors are negatively correlated over some layers of 
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the atmosphere.  Bearing this in mind, when the derivatives in Equations 5.2.9 and 5.4.29 

are computed numerically, we write  

( )
R

X(p) R X(p) X(p) R(X(p))
X(p)

!
! = + " #

!
              5.4.35 

where !X(p) is related to, but not equal to !X(p)  .  To allow for some negative 

correlation in expected profile errors, !X(p)  is constructed by multiplying !X(p)  by a 

sine wave with a full period of six temperature profile functions in the case of uncertainty 

of temperature profile to be used in the humidity and ozone profile retrievals, and six 

humidity profile functions in the case of water vapor uncertainty to be used in the 

temperature and ozone profile retrievals.  In the case of ozone profile, with only seven 

functions, we simply multiply the predicted uncertainty by 0.5.  We have also found that 

in constructing the noise covariance terms in Equation 5.2.9 used for cloud clearing and 

cloud property retrievals, it was more advantageous to instead set !X = 0.5 "(X)  for all 

profile terms.  For surface parameters we take !X = "X , as for the liquid water profile. 

5.4.11 Retrieval of Cloud Parameters 

Retrieval of cloud parameters is a fundamentally different process from, and should not 

be confused with, the process of cloud clearing.   Both applications use observed 

radiances in the 9 AIRS FOVs within an AMSU A FOR.  Cloud clearing (Section 5.2) 

extrapolates AIRS observations in the 9 potentially cloudy FOVs to obtain the cloud- 

cleared radiances, R̂i , which represent what the observations would have been if 

everything else were the same, but no clouds were present.  These cloud-cleared 

radiances are then used to determine the surface and atmospheric properties within the 

AMSU FOR.  There is no need to know anything about the properties of the clouds in the 

FOR to do this, nor is there any need to compute expected radiances in the cloudy portion 

of the scene. 

In order to determine cloud parameters from the observed AIRS radiances, one does 

essentially the reverse procedure.  Surface and atmospheric conditions are first 

determined consistent with the cloud cleared radiances, and then cloud parameters are 
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obtained such that radiances computed using the surface, atmospheric, and cloud 

parameters best match the observed radiances in the different fields of view for an 

ensemble of channels.  This process involves the computation of expected radiances for 

cloudy scenes, which was not required for cloud clearing. 

Retrieved cloud parameters are important geophysical parameters in their own right and 

are useful for process and climate studies.  They are also used to compute OLR, which 

has been used extensively in the study of climate process.  In addition, the retrieved cloud 

top pressure is used in the procedure to determine whether a channel “sees” or “does not 

see” clouds, which in turn affects the derived clear column radiance R̂i  for that channel 

as well as its channel noise amplification factor (see Section 5.2).  For this reason, cloud 

parameter retrievals are performed each time clear column radiances are determined 

(steps 2, 5, 7, and 13 in the processing systems). 

5.4.11.1 Computation of Radiances in the Presence of Clouds 

The observed radiance for the i
th 

channel, Ri , in a scene with j cloud types, can be 

expressed  by  

 
 i j i,CLR j i,CLD, j

j j

R (1 )R R= ! " + "# #                  5.4.36 

 

where  ! j   is the fraction of the scene covered by cloud type j,  Ri,CLR  is the clear sky 

radiance for channel i (i.e., the radiance emerging from the clear portion of the scene), 

and  Ri,CLD, j   is the i
th 

channel radiance emerging from the cloudy portion of the scene 

covered by cloud type j (Chahine, 1982).  

The computation of Ri,CLD, j  for a given scene is complex as a result of to the detailed 

spectral absorption and reflection properties of clouds, cloud morphology within the 

field-of-view, and geometric shadowing factors. Assuming plane parallel cloud 

formations, Ri,CLD, j  can be computed according to   
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                                             5.4.37 
 

where !ic j
 and ic j

!  are respectively the transmissivity and emissivity of cloud type j at 

channel
 
frequency !i  and cloud top temperature Tc j

; !ic j
 is the cloud bi-directional 

reflectance of solar radiation  incoming at solar zenith angle !
o

 and outgoing in the 

direction of the satellite; !"i(pc j
)  is the two path atmospheric transmittance from the top 

of the atmosphere to the cloud top pressure pc j
; and Hi  is the solar irradiance.  In 

Equation (5.4.37), the first term represents radiation emitted by the cloud that is 

transmitted by the atmosphere to the satellite; the second term represents the portion of 

the radiation absorbed and emitted by the atmosphere above the cloud; the third term 

represents the additional contribution to the radiance of upwelling radiation from below 

the cloud that passes through the cloud, and the fourth term represents solar radiation 

reflected by the cloud in the direction of the satellite.  Equation 5.4.37 neglects a small 

term due to downwelling thermal radiation reflected off the cloud in the direction of the 

satellite.  

When retrieving cloud properties, the channels used are limited (see Table 5.4.1) to those 

at frequencies less than 1250 cm-1, for which the last term in Equation 5.4.37 is not 

significant.  The cloud property retrieval step uses the 38 AIRS channels which are 

indicated in Table 5.4.2 in the column marked HGT. 

If there is only one cloud type in the scene, then the radiance emanating from that cloud 

for the channels used in the cloud parameter retrieval step can be expressed as  
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            5.4.38 
 

Making the approximation that !ic1 = (1" #ic1
)  ,  then Equations 5.4.36 and 5.4.38 

combine to give  

 ( ) ( ) ( )1 1 1

B
i 1 ic i,CLR 1 ic i,CLD cR 1 R R p= !" # + " #                5.4.39 

 

where Ri,CLD
B pc1( )  is the radiance computed for a black cloud ( )ic ic0, 1! = " =  with 

cloud top pressure pc1 .  It is apparent that the term !1"ic1 appears only as a product in 

Equation 5.4.39.  Therefore !  and !ic  cannot determined independently, but only as a 

product, which can be thought of as a radiatively effective cloud fraction that may be a 

function of frequency.  To the extent that !ic  is a function of frequency, the frequency 

dependent term !1"ic1
can be expressed as ( ) 11

( )!"# !c F  where !"c#( )
1

 is a 

representative value of the effective cloud fraction !1"ic1  at a given frequency ! , and 

F1(!)  expresses the frequency dependence of !c"
!c"

 . 

 If there were two cloud types, and ( )
2 2ic ic1! = " # , then the observed radiances 

can be expressed as  

 ( ) ( ) ( )1 2

B B
i i,1 i,2 i,CLR i,1 i c i,2 i cR 1 ( ) ( ) R ( )R p ( )R p= ! "# ! "# + "# + "#          5.4.40 

where (!"i,1)  and (!"i,2 )  are the radiatively effective cloud fractions for the clouds at 

pc1
and pc2 .  For the higher cloud at pc1 , (!"i,1) = !1 "ic1

as before.  On the other hand, 

for the lower cloud, the effective cloud fraction (!"i,2 )  is given by 
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 ( )2 1i,2 ic 2 ic 1 12( ) 1! "#$ = $ # + % $ # #
& '

                             5.4.41 

where !12  is the fraction of the area covered by cloud type 1 which is undercovered by 

cloud type 2.  To the extent that ( )
1ic

1! "  is frequency dependent and !12  depends on 

field-of-view, this situation actually contains three cloud formations, because the spectral 

dependence of radiances in areas covered by clouds at both levels is different from that of 

clouds at either of the two levels, in a manner that is field-of-view dependent.   In 

principle, this should not by itself degrade the ability to derive cloud cleared radiances, 

which allows for up to four cloud formations.  On the other hand, the cloud parameter 

retrieval algorithm described in the next section allows for only two layers of grey 

clouds.  Such a situation would give effective values of cloud top pressure as well as  

cloud fraction, as would the presence of three or more distinct cloud types in the FOR. 

5.4.11.2 Cloud Parameter Retrieval Methodology 

The cloud parameter retrieval is performed in an exactly analogous manner to that of all 

other retrieval steps.  Observations in each of the nine fields of view k=1,9 are used to 

determine cloud parameters, assuming there are clouds with two distinct cloud top 

pressures, with varying frequency independent effective cloud fractions, (!")1k  and 

(!")2k  within the 9 fields of view k.  Using this assumption, the computed channel 

radiances Rik
n  are expressed in terms of the nth iterative estimate of the relevant cloud 

parameters according to 

      ( ) ( ) ( )1 2

n nn n n n B B
ik 1k 2k i,CLR 1k i c 2k i cR 1 ( ) ( ) R ( ) R p ( ) R p .= ! "# ! "# + # + "#      5.4.42 

 

In computing R1k
n , the previously retrieved values of surface skin temperature, surface 

spectral emissivity, and atmospheric temperature, moisture, and ozone profiles are used 

to compute Ri,CLR  and ( )j
B
i cR p  .  The only unknowns in Equation 5.4.42 are !"( ) jk   (j 

= 1, 2; k = 1, 9), and pc1 and pc2 .    The observed radiances Ri,k  in each of the 9 fields-
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of-view for each of the 38 cloud parameter retrieval channels (a total of 342 observations) 

are used to solve for these 20 variables (18 cloud fractions and 2 cloud top pressures). 

The noise covariance matrix N used to retrieve cloud parameters, which represents both 

noise in the observations and uncertainties in the computed values of Ri,CLR , is taken to 

be identical to that used in the determination of η (Equation 5.2.9) for the appropriate 

subset of channels.  

The 20 unknown cloud parameters are solved for in an iterative manner.  We   define Yik
n   

as the difference between the observed channel radiances in field of view k, Ri,k ,  and 

that computed from the nth estimate of the cloud parameters, Rik
n .  The goal is to find nth 

iterative parameters so as to minimize Yik
n .  Yik

n  can be expressed according to 

 

 Yik
n
! Ri,k " Rik

n
= Ri,k " Ri,CLR( ) + #$ jk

n

j=1,2

% Ri,CLR " Ri(pc j
n )( ) .                  

5.4.43 

 
This gives rise to the iterative equation 
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n                               5.4.44  

in which the terms in brackets are the appropriate Jacobians, computed empirically as are 

all other Jacobians.   Note that if  (!")jk  (for all k) and/or !Ri / !pc j   (for all i) are small 

for a given pc j , the Jacobian for that cloud top pressure is small and the cloud top 

pressure is contained primarily in a heavily damped mode and is not changed 

significantly from the initial guess.  
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As stated previously, the cloud parameter retrieval step is performed four times, 

occurring each time new cloud cleared radiances R̂i  are derived.  This is done primarily 

because the retrieved pressure of the highest cloud is used to decide which channels “see” 

clouds.  In the methodology described above, only 2 cloud top pressures are derived to be 

representative of clouds in the entire AMSU FOR comprised of 9 AIRS FOV’s.  Because 

the primary purpose of the cloud parameter retrieval step, the first three times it is 

performed, is to determine cloud top pressure, the process is simplified the first three 

times it is done to derive only 2 cloud top pressures and 2 effective cloud fractions.  This 

saves a considerably amount of processing time.  The retrieval methodology is analogous 

to that described in Equations 5.4.43 and 5.4.44, with the exception that Ri,k  is replaced 

by Ri , (!")jk
n  is replaced by (!")j

n , Yik
n  is replaced by Yi

n , and Sik  is replaced by Si , 

where in each case, the bar superscript refers to the average of the appropriate value over 

all 9 FOV’s k.  The first three cloud parameter retrievals then use 38 observations (Ri)  to 

determine 2 cloud top pressures and two effective cloud fractions, representative of the 

average effective cloud fraction over the whole FOR corresponding to each cloud top 

pressure.  The 9 individual cloud fractions are only derived in the last cloud parameter 

retrieval step. 

For our retrievals, the first guess cloud top pressures are taken as 350 mb and 850 mb (or 

100  mb above the surface, whichever is less), and the first guess effective cloud fractions 

taken as 1/6 for the upper cloud and 1/3 for the lower cloud.  !Bmax   is set equal to 5 

when two pairs of cloud fractions are determined, and  !Bmax  is set equal to   20 when 9 

pairs of cloud fractions are determined.  The solution is constrained such that 

pc1
! 100mb and pc2

" ps # 50mb  where ps  is the surface air pressure.  In addition, 

(!")1,k + (!")2,k  are constrained to be !  1.0.  If the second effective cloud fraction is 

either set very small in the first guess, or becomes very small in the retrieval, no useful 

information about the second cloud top pressure can be determined.  

In most cases, IR/MW retrieval based cloud parameters and geophysical parameters, 

derived in Steps 13 and 14, are reported.  In such cases, the 2 cloud top pressures and 18 
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effective cloud fractions will be reported.  These are used to derive 9 values of OLR and 

clear sky OLR, one for each AIRS FOV, which are also reported.  Under some 

conditions, primarily when cloud cleared radiances cannot be generated in an accurate 

enough manner to produce meaningful results (e.g., if the FOR were overcast), then 

MR/strat IR based cloud parameters and geophysical parameters, derived in Steps 1 and 2 

are reported.  In such a case, 2 cloud top pressures and 2 effective cloud parameters are 

reported, as well as one value each of OLR and clear sky OLR, valid for the whole FOR. 

5.4.12 Computation of OLR and Clear Sky OLR 

OLR is computed from the AIRS products in a manner analogous to that used to compute 

OLR from TOVS (Mehta and Susskind, 1999a; 1999b) 

( )
1 21 2 CLR 1 CLD c 2 CLD cF 1 ( ) ( ) F ( ) F (p ) ( ) F (p ) ,= ! "# ! "# + "# + "#               5.4.45  

where in Equation 5.4.45,  F represents the OLR for the entire scene, FCLR  represents the 

OLR emanating from the clear portion of the scene, and FCLD(pc )  represents the OLR 

that would be observed if the scene were covered by a black cloud with cloud top 

pressure pc .   All OLR flux terms are computed as the sum of contributions from 14 

spectral bands.  FCLR  is computed according to  

i i

s

np14
i

CLR i s i s
i 1 np

d
F B (T ) (p ) B ( ) d np

d nP
! !

=

" #$
% &= ' ( $ + $) *
% &+ ,

!

!

!
!                 5.4.46 

where !i  is the average surface emissivity over spectral band i.  The band transmittances 

!i(p)  used in Equation 5.4.46 are computed at band dependent effective zenith angles, 

!i .   A small term related to downwelling thermal radiation reflected off the surface and 

transmitted to space is neglected in Equation 5.4.46.  FCLD(pc ),  the flux emanating from 

the portion of the scene covered by black cloud at cloud top pressure pc , is computed in 

an analogous way 
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d
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" #$
% &= ' $ $ + $( )
% &* +
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!
!

              5.4.47 

The band transmittances !i(p)  are parameterized as a function of temperature, moisture, 

and ozone profile in an identical manner to those used by Mehta and Susskind (1999a, 

1999b).   

In all cases, FCLR, FCLD, and !"  are computed using the appropriate state estimates, 

IR/MW or MW/strat IR, as described previously.  FCLR  is also reported as the clear sky 

OLR, representative of what OLR would be if the scene were otherwise identical but 

contained no clouds.  This is a physically different quantity to that which would have 

been observed if sampled only under completely clear conditions because of sampling 

differences. 

5.4.13 Differences Between At-Launch Algorithm and Version 4 

The at-launch algorithm, described in Susskind, et al., (2003), was developed and 

optimized based on simulated data.  The differences between Version 4, used with real 

AIRS/AMSU/HSB data, and the at-launch version of the retrieval algorithm are relatively 

small.  The post-launch channel frequencies were somewhat different from those pre-

launch, as expected, as were the channel spectral response functions.  Consequently, new 

Radiative Transfer Algorithm (RTA) coefficients were generated (Strow, et al., 2005) to 

be consistent with the post-launch instrumental conditions.  Minor modifications were 

therefore made to the set of channels used in the retrieval algorithm shown in Table 5.4.2.  

The most significant of these modifications resulted from the finding that more channels 

in the 4.3-µm region were affected by non-local thermodynamic equilibrium (non-LTE) 

than previously thought.  Radiances in these channels are perturbed during the day, and 

these channels are currently not used in the retrieval algorithm day or night.  It was also 

found that observed channel brightness temperatures for AIRS, as well as AMSU, were 

biased from those computed using the RTA with the best estimate of the truth.  These 

biases, referred to as “tuning coefficients,” are subtracted from all terms in the retrieval 

algorithm involving observed minus computed brightness temperatures.  New regression 
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coefficients were also generated (see Section 5.3) based on clear column radiances for an 

ensemble of accepted retrievals, using the 3-hour ECMWF forecast at “truth.”  A few 

AIRS channels exhibit a radiometric instability characteristic, known as “popping”, and 

these channels are excluded from the list of channels used either in the regression or the 

physical retrieval steps.  It was also found that many of the channels used in the at-launch 

physical retrieval algorithm were not needed in practice, and are no longer used in the 

physical retrieval steps so as to make the physical retrieval computationally more 

efficient with no loss of accuracy.  A new concept has also been introduced in terms of 

quality control, in which different geophysical parameters retrieved from AIRS/AMSU 

data have different criteria for acceptance.  The basic steps in the retrieval algorithm, 

given in Section 5.4.1, are essentially identical to those shown in Susskind, et al., (2003).  

The only change is a new step to determine the CO profile done after the retrieval of the 

final surface skin temperature and temperature profile.  This step is done in an analogous 

manner to what is done in the H2O and O3 profile retrieval steps. No change was made to 

the cloud clearing algorithm other than the AIRS channels used in the cloud clearing step.  

The major change from the at-launch algorithm is with regard to the new quality flag 

concept. 

5.4.13.1 Minor Differences from the At-Launch Version 

There are only minor differences in the details of the different retrieval steps, compared 

to what was done in the pre-launch algorithm described in Susskind, et al., 2003.  These 

minor differences are detailed in the following sections. 

5.4.13.1.1 Temperature Profile Retrieval Step 

The number of AIRS channels used in the physical retrieval of temperature profile has 

been decreased from 147 to 65, the number of functions remains at 23, and !Bmax  has 

been reduced from 0.75 to 0.5 (increasing damping).  Information about the mid-lower 

troposphere comes primarily from the 9 temperature sounding channels between 2387 

cm-1 and 2395 cm-1. 
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5.4.13.1.2 Water Vapor Profile Retrieval Step 

The number of AIRS channels used has been decreased from 66 to 42, the number of 

functions remains at 10, and !Bmax  remains at 1.0. 

5.4.13.1.3 Ozone Profile Retrieval Step 

The number of AIRS channels has been increased from 23 to 26, the number of functions 

remains at 7, and !Bmax  remains at 0.75. 

5.4.13.1.4 Surface Parameter Retrieval Step 

Some significant modification has been made to the surface parameter retrieval step.  The 

surface parameter retrieval step determines surface skin temperature, IR surface spectral 

emissivity !i , and IR effective surface spectral bi-directional reflectance !i .  The initial 

guess for !i  and !i  is generated by the regression step.  Over ocean, we replace this by 

the Masuda model refined by Wu and Smith (1997) as the initial guess for !i
0 , and set 

( )0 0
i i1 /! = " # $ .  In addition to determining Ts , Susskind, et al., (2003) determined 

coefficients of 8 perturbation functions for !i  and 3 perturbation functions for !i .  53 

window channels were used, and !Bmax  was set at 0.2. 

Detailed analysis of sea surface temperature retrieval accuracy showed that use of 8 

perturbation functions over ocean, even with considerable damping resulting from 

!Bmax= 0.2, was causing spurious oscillations in the retrieved spectral emissivity, and 

resultant biases in retrieved sea surface temperature.  Over ocean, the Masuda spectral 

emissivity model generates a reasonable shape of the spectral surface emissivity.  

Therefore, the number of !  perturbation functions was reduced from 8 to 2.  One 

function adds a spectrally constant value to !i
0  at frequencies lower than 1614 cm-1, and 

the second adds a different spectrally constant value to !i
0  at frequencies higher than 

2181 cm-1 (there are no AIRS channels between 1614 and 2181 cm-1).  Also, only a single 

spectrally constant perturbation function, which is added to !0 , is used.  !Bmax  has been 

increased (less damping) to 0.5.  This resulted in a significant improvement in the 

accuracy of the retrieved sea surface skin temperature. 
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For simplicity, the same procedure is used over land, sea ice and coasts (henceforth 

referred to as “land”).  Unlike ocean cases, the initial guess for the shape of the surface 

spectral emissivity, coming from the regression step, is in general very poor, especially 

over arid land.  The Version 4 surface emissivity algorithm, optimized for ocean cases, 

needs more development for land cases.  Consequently, the surface spectral emissivity 

product over land should not be used by researchers at this time.  We are conducting 

research to produce a better land surface spectral emissivity in the next version of the 

AIRS retrieval algorithm. 

5.4.13.1.5 Cloud Clearing 

The cloud-clearing methodology, developed and optimized using simulated cloudy 

radiances, is essentially unchanged when used with real data.  Less channels are used 

than in the at-launch algorithm because it was found that their elimination served only to 

speed up the cloud-clearing step with no appreciable loss in accuracy.  In particular, 

channels in the spectral region 2387 – 2392 cm-1 are no longer included in the cloud 

clearing step. 

5.4.13.1.6 Cloud Parameter Retrievals 

The most significant change to any step in the at-launch retrieval system is in the cloud 

parameter retrieval.  The at-launch cloud parameter retrieval algorithm was optimized 

based on simulated gray clouds at two levels, with varying cloud fractions in the nine 

AIRS spots.  Real clouds are of course more complex.  Since cloud clearing anticipates 

cloud formations and cloud parameter retrieval anticipates cloud layers, the impact is 

entirely different.  Susskind, et al., (2003) accounts for up to four independent cloud 

formations within a 3x3 array of AIRS FOVs in deriving the clear column radiances.   

The identical methodology is used in Version 4, and in most cases, excellent results are 

obtained.  Cases in which the cloud-clearing methodology breaks down are usually 

identified by the quality control algorithm described in the next section. 

For cloud parameter retrieval, however, we found that in many cases, the two-layer 

assumption does not represent the clouds very well and the rate of convergence to the 

best radiatively equivalent two-layer solution is slower than found in simulation.  To 
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accommodate this realization, the convergence test, which in simulation specified that 

each iteration must reduce residuals by at least 25% before the retrieval is terminated, 

was relaxed to a test which specified a minimum reduction of 5%, and this convergence 

test was applied only after the third iteration.  The damping criterion was also relaxed, 

increasing !Bmax  from a pre-launch value of 7.0 to 20.0, so that the radiances would be 

believed much more, relative to our arbitrary cloud parameter first guess state with cloud 

top pressures of 350 and 850 mb.  It was discovered that the algorithm is more able to 

move clouds up in the atmosphere than to move them down.  For this reason, the first 

guess, which was 350 mb and 650 mb in Susskind, et al., (2003), was altered to 350 and 

850 mb, subject to being a minimum of 100 mb above the surface.  However, there were 

no adjustments made to the fundamental cloud parameter retrieval methodology 

described in Susskind, et al., (2003) and in Section 5.4.8.6. 

5.4.13.2 Generation of Tuning Coefficients 

Steps in the physical retrieval and cloud clearing algorithms involve the difference 

between observed (or cloud cleared) radiances Ri , and those computed from some 

geophysical state, 

� 

Ri
comp , using the radiative transfer algorithm (RTA) described in 

Strow, et al., (2005).   If one had a perfectly calibrated instrument and perfect 

parameterization of the radiative transfer physics, then, given the true surface and 

atmospheric state, expected radiances, Ri
true , could be calculated that match the observed 

radiances Ri  up to instrumental noise.  Systematic errors in either the calibration of the 

observed radiances i,R !   (channel i, zenith angle   

� 

! ), or in the computation of radiances 

  

� 

Ri,!
comp , would introduce biases in ( )comp

i, i,
R R!! !

 and propagate errors into the solution.  

We attempt to identify these biases and remove their effect by subtracting them from all 

terms of the form ( )comp
i i
R R!  whenever they occur in the retrieval and cloud clearing 

processes, as well as in the cloud parameter retrieval process.  This subtraction is done in 

the brightness temperature domain for both AIRS and AMSU radiances, in a manner 

analogous to that described in Susskind and Pfaendtner (1989) and used by Susskind, et 

al., (1997) in the analysis of HIRS2 and MSU radiances: 
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� 

ˆ ! i,! "!i,!
comp( )

#
= ˆ ! i,! "!i,!

comp( ) " $!i,!                 5.4.48  

where  ( ), ,
ˆ !
" #"! !

comp
i i

 is the tuned value, 

� 

!i is the brightness temperature 

corresponding to Ri ,  and  i,!" !  is the tuning correction.    

All retrieval steps involve 

� 

ˆ R i !Ri
comp .    For AIRS channels, the tuned value of 

  

� 

ˆ R i,! !Ri,!
comp( ), denoted by 

 

R̂i,! ! Ri,!
comp( )" , is computed according to 

  

� 

ˆ R i,! !Ri,!
comp( )

"
= ˆ # i,! !#i,!

comp( )
" dB

dT

$ 

% 
& 

' 

( 
) 

ˆ # i,!

,                          5.4.49  

and is used in place of 
  

� 

ˆ R i,! !Ri,!
comp( ) in all retrieval steps.   An analogous procedure is 

used to adjust observed minus computed radiances in the cloud clearing and cloud 

parameter retrieval steps. 

5.4.13.2.1 Generation of AIRS Tuning Coefficients 

In order to generate AIRS channel tuning coefficients, cases were selected thought to be 

unaffected by clouds so as not to have to account for cloud effects on the observed 

radiances.  The 3-hour ECMWF forecast, collocated to the satellite observations, is used 

as truth, and observations were limited to nighttime non-frozen ocean (henceforth 

referred to as “ocean”) so as to avoid effects of solar radiation reflected by the surface as 

well as effects of non-LTE.  Ocean cases were selected because we have the best estimate 

of both sea-surface temperature and surface emissivity over oceans, compared to land, to 

be used in the computation of 

� 

Ri
true .  Over ocean, the IR surface spectral emissivity is 

parameterized according to Masuda, et al., (1988), as modified by Wu and Smith (1997), 

assuming a surface wind speed of 5 m/sec.  For the computation of IR biases, cases were 

selected for which the retrieval was accepted and called essentially clear according to the 

methodology described in Susskind, et al., (2003).  In addition, a cirrus screening test 

was added, eliminating all scenes in which the absolute difference of the difference of 
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observed minus computed brightness temperatures for 790 cm-1 and for 945 cm-1 was 

greater than 0.3K.   

Figure 5.4.3a shows the nighttime biases of observed minus computed brightness 

temperatures averaged over all zenith angles  

� 

! for the AIRS channels for the 5138 clear 

ocean night cases found on 6 September 2002.  These biases had very little scene or 

zenith angle dependence.  Therefore, for AIRS channels, the tuning coefficient for 

channel i is taken as an angle independent constant                                

 
  

� 

!"i,! = Ai                       5.4.50

  

Computed biases in channels affected significantly by radiation emitted from the surface 

are less meaningful because of effects of uncertainty in the “true” surface skin 

temperature and surface emissivity on 

� 

Ri
true .  Likewise, biases for channels significantly 

effected by ozone absorption are suspect because of limited accuracy of ozone profiles in 

the ECMWF forecast, and to a lesser extent, this holds for channels significantly affected 

by water vapor absorption as well.  In general, observed brightness temperatures are 

somewhat warmer (generally 0.5K-1.5K) than those computed using the RTA in the CO2 

absorption region 650 cm-1 – 750 cm-1.   

Figure 5.4.3b shows that daytime biases are very similar to nighttime biases, except for 

the region between 2240 cm-1 and 2386 cm-1, and greater than 2400 cm-1.  Daytime 

radiances in the first spectral range are affected to varying degrees by non-LTE.  Figure 

5.4.3b indicates by stars the channels currently used for temperature sounding in the 

spectral region 2200 cm-1 – 2420 cm-1, which is a smaller set than in the at-launch 

version.  Channels sensitive to non-LTE effects are not used in the physical retrieval step 

at this time because non-LTE effects are not currently accounted for in the RTA.  The 

negative differences at frequencies greater than 2400 cm-1 are indicative of limitations in 

the treatment of the surface bi-directional reflectance, 

� 

! , when generating the “truth”.  

This is of no consequence because 

� 

!  is solved for as part of the retrieval process.  Tuning 

coefficients are applied only for channels in the range 650 cm-1 – 756 cm-1 (CO2 
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absorption), and 2180 cm-1 – 2422 cm-1 (CO, N2O and CO2 absorption).  Those spectral 

regions in which the tuning coefficients are applied are indicated by the horizontal bars in 

Figure 5.4.3.  

 
Figure 5.4.3. Brightness Temperature BIAS Observed minus Computed (K) 

 
5.4.13.2.2 Generation of AMSU Tuning Coefficients 

The procedure used to generate AMSU tuning coefficients is analogous to that used to 

generate AIRS tuning coefficients.  The coefficients used were generated for ocean cases 

on 6 September 2002. These cases were screened to eliminate contamination from 

precipitating clouds.  Unlike the biases found for AIRS channels, AMSU channels had a 

pronounced, and systematic, zenith angle (beam position) dependence.  This arises from 

effects of antenna side-lobes, which were not adequately accounted for in the calibration 

of the AMSU observations.  Figure 5.4.4 shows the beam position biases observed on 6 

September 2002, for the AMSU-A channels. The larger the AMSU-A channel number, 

the higher in the atmosphere the channel is sensitive to, and less of the surface is seen.  

Also shown are analogous biases determined using data for 25 January 2003.  The beam 

position biases found on 6 September 2002 and 25 January 2003 are very similar to each 

other, including coarse and fine angle dependent features.   
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Figure 5.4.4a. Biases of Microwave Channels vs. ECMWF 

 

 
Figure 5.4.4b. Biases of Microwave Channels vs. ECMWF 
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Figure 5.4.4c. Biases of Microwave Channels vs. ECMWF 

The standard deviations of the difference between observed and computed brightness 

temperatures for these channels are shown in Figure 5.4.5.  The standard deviations are 

affected by channel noise, errors in the “truth”, and scene dependence of the necessary 

tuning.  For the most part, the beam dependent standard deviations are on the order of the 

instrumental noise.  This indicates that there is only small scene dependence of the 

required tuning.  Standard deviations increase with increasing sensitivity of the channel 

radiance to surface effects, because of errors in the “truth”.  Note, for example, the 

standard deviations in channels 1 and 2, and the central angles of channels 3 and 4, which 

see less and less of the surface respectively, especially as zenith angles increase from 

nadir.   Figure 5.4.5 also confirms the finding that AMSU channel 7 is very noisy, and for 

this reason, radiances in AMSU-A channel 7 are not used in the retrieval procedure. 

Based on these findings, AMSU channels are tuned according to  

      
  

� 

!"i,! = Ai,!                      5.4.51 
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with 
  

� 

Ai,! determined using the September 6, 2002 data, and shown by the fine black 

curves in Figure 5.4.3a.  All AMSU channels are tuned (i.e., the tuning correction is 

applied) except for channel 15 (89 GHz), because radiances in channel 15 over ocean are 

highly sensitive to absorption by water vapor, which is not adequately characterized by 

the ECMWF forecast.  For the same reason, HSB channels are not tuned.  AMSU-A 

channels 1 and 2 are tuned, even though they are highly sensitive to surface 

effects,because of the obvious large angle dependence to the biases.  As with AIRS 

tuning coefficients, these adjustments are used globally and for all time periods.   

 

 

 

Figure 5.4.5a. STD Microwave Channels vs. ECMWF 
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Figure 5.4.5b. STD Microwave Channels vs. ECMWF 

 

 
Figure 5.4.5c. STD Microwave Channels vs. ECMWF 
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5.4.13.3 Modeling of Computational Noise 

The physical retrieval algorithm (Susskind, et al., 2003) involves the matrix !S N
"1
S( )  

where 

� 

Sij is the Jacobian, (the derivative of the computed radiance of channel i with 

regard to variable j), and 

� 

Ni ! i  is the channel noise covariance matrix.  An analogous 

equation, involving the matrix N, is used in the cloud clearing process. 

In Susskind, et al., (2003), N is written as a sum of two components 

 

� 

N = ˆ N + ˜ N                      5.4.52 

where 

� 

ˆ N  represents errors in 

� 

ˆ R  due to instrumental noise, including effects of noise 

amplification and errors resulting from the cloud clearing process, and 

� 

˜ N  represents 

uncertainty in 

� 

Ri
comp   resulting in errors in variables assumed to be known.  An 

additional term, reflecting errors in 

� 

ˆ R i !Ri
comp( )  resulting from a combination of 

calibration errors and errors in the RTA, was not included in Susskind, et al., (2003).   

Such a term is included in the channel noise covariance matrix given in Equation 5.4.25, 

and called Mii
phys .  In the following discussion, Mii

phys  will be referred to as Nii . 

In Section 5.4.11.2, the procedure to identify biases in 

� 

ˆ R i !Ri
comp( )  was given, as well 

as the methodology to account for the effects of biases in the retrieval process.  There are 

still residual (possibly case dependent) errors in 

� 

ˆ R i !Ri
comp( ) .  These uncertainties, Nii , 

need to be modeled and included in the channel noise covariance matrix 

 

� 

N = ˆ N + ˜ N + N                     5.4.53 

Figure 5.4.5b showed standard deviations of 
  

� 

ˆ ! i,! "!i,!
true( )  for the AMSU-A channels.  

The values in Figure 5.4.5b combine the effects of 

� 

ˆ N   (channel noise), 

� 

˜ N   (effects of 

errors in the truth) and 

� 

N  (residual errors).  It is difficult to separate 

� 

N  from 

� 

ˆ N  and 
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(especially) from 

� 

˜ N .  For some channels, 

� 

˜ N   (errors in the “truth”) could be the dominant 

term.   

In an attempt to estimate 

� 

N , we look at the standard deviation of !̂i " !i
sol( ) , where 

� 

Ri
sol is computed from the retrieved state and !i

sol  is the brightness temperature 

corresponding to Ri
sol .  For AIRS channels, the same set of clear ocean observations on 6 

September 2002 that were used to generate the tuning coefficients were used to estimate 

Nii .  Clear cases were chosen so as to avoid noise amplification and other errors arising 

from the cloud-clearing process.  If 

� 

N ii were set equal to the standard deviation of 

!̂i " !i
sol( ) , 

� 

N ii could be overestimated on the one hand, because of inclusion of noise 

effects 

� 

ˆ N ii in the residual, and underestimated on the other hand, if an incorrect solution 

could be found that matched, case by case, the noise in 

� 

ˆ R i as well as the residual physics 

errors.  The latter will not happen in general because radiances in many channels 

influence the solution.  Nevertheless, if a geophysical parameter (say, 1-mb temperature) 

is determined primarily by the radiance in a single channel 

� 

i, then a case by case solution 

would be found such that 

� 

ˆ R i !Ri
sol( ) would be very small.  This situation occurs in those 

15-µm channels primarily sensitive to the upper stratosphere, at frequencies lower than 

670 cm-1.  Therefore, (somewhat arbitrarily), 

� 

N ii was set equal to twice the standard 

deviation of !̂i " !i
sol( )  for AIRS channels with frequencies less than or equal to  

670 cm-1.  At all higher frequencies, (somewhat arbitrarily) 

� 

N ii was set equal to one half 

the standard deviation of the residual of !̂i " !i
sol( )  because of possible inclusion of 

channel noise effects.  A number of options were tested, and the above specification of 

� 

N ii resulted in the best retrieval performance.  

� 

N ii is defined in this manner for all 

channels, but is only relevant for those channels used in the physical retrieval process.   

Off diagonal terms 

� 

N ij  were set equal to zero for all channels.  An analogous procedure 

was used to generate 

� 

N ii for all microwave channels, in which case 

� 

N ii was set equal to 
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the RMS residual of 

� 

ˆ ! i "!i
sol( ).  No appreciable zenith angle dependence was found in 

the standard deviation of !̂i " !i
sol( )  for either AIRS or AMSU channels.  Figure 5.4.4 

shows 

� 

N ii determined in this fashion for all AIRS channels.  The residuals were 

evaluated and shown in the brightness temperature sense.  The values of 

� 

N ii are typically 

on the order of 0.3K in brightness temperature units for AIRS channels at frequencies 

greater than 668 cm-1.  When used in Equations 5.2.9 and 5.4.25, 

� 

N ii is converted into the 

radiance units. 

� 

N ii for AMSU channels was also on the order of 0.3K. 

5.4.13.4 New Quality Flags 

The major change to the at-launch algorithm is a new concept with regard to quality 

flags. Susskind, et al., (2003) discussed a number of threshold tests used to determine 

whether the combined IR/MW retrieval is of good quality.  These tests utilize only the 

AIRS/AMSU radiance data.  No external data, such as GCM forecast fields or MODIS 

observations are used.  If the tests were all passed, the combined IR/MW retrieval state, 

and associated clear column radiances, were reported, as well as cloud and OLR values 

consistent with the AIRS radiance observations and the IR/MW retrieval state.  If any of 

the tests were not passed, IR/MW retrieval state was “rejected” and the MW/strat IR 

retrieval state was reported, as well as associated values of cloud parameters and OLR 

constant with that state.  Rejection usually implied problems with regard to treating 

effects of clouds in the field of view, and rejected cases produced generally poorer results 

in the mid-lower troposphere and at the surface.   

5.4.13.4.1 At-Launch Rejection Criteria 

A number of tests are made in Susskind, et al., (2003) to determine whether the entire 

retrieval is rejected or accepted.  The major cause of rejection is difficulty in dealing with 

the effects of clouds on the AIRS radiances.  These tests are described in the following 

sections, with threshold values given in Table 5.4.4. 

5.4.13.4.1.1 Assessment of the Cloud-Clearing Fit 

Equations 5.2.16, 5.2.17, and 5.2.7 give the solution for the vectors !  and ! , and the 

resultant clear column radiances R̂i .  If a successful solution is produced, the ensemble 
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R̂i  for the cloud-clearing channels should match the incoming estimates of cloud-cleared 

radiances Ri,CLR  to a reasonable degree.  A poor match is indicative of either a 

particularly poor first guess or problems in handling the effects of clouds on the 

radiances.  The weighted residuals of the clear-column radiances are computed for the 

channels used in the computation of ! , and corrected to brightness temperature units 

according to 

( )

i

1/ 2

2 1
i i,CLR ii

i
2

1 i
ii

i

R̂ R N

F
B

N
T

!

!

"

# $
% &!'% &

( = % &
)# $% &' % &% &)* +* +

                      5.4.53 

The solution is rejected if !F  computed when determining R̂i
1  is greater than 1.75K. 

5.4.13.4.1.2 Difficult Cloud Cases 

Cases with extensive cloud cover, resulting in low contrast, are particularly difficult to 

analyze.  The solution is rejected in Susskind, et al., (2003) if the sum of the final 

retrieved cloud fractions !"  for all cloud layers is greater than 0.8, the noise 

amplification factor in the final cloud clearing step, A(4) , is greater than 3, or the 

effective noise amplification factor Aeff
(4)  is greater than 8.   The retrieval is also rejected 

if the total cloud liquid water determined in the microwave product retrieval step, Wliq , 

is greater than 0.03 gm/cm2. 

5.4.13.4.1.3 Large Residuals in Second-Pass Retrievals 

The general iterative solution is terminated when either the residual Rn  (Equation 

5.4.23) is less than 10% of the RSS of the predicted noise for each mode n
R B! !
" , 

Equation 5.4.17 or Rn  is more than 75% of Rn!1 .  Slow convergence indicates a poor 

solution.  The solution is rejected if the converged value of R is greater than 1.0 times the 

root-sum-square of ! !
"B  in either the surface parameter retrieval Rsurf( )  or the 
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temperature profile retrieval Rtemp( )  in the second pass.  Poor convergence generally 

indicates problems with the clear column radiances R̂i
4 . 

5.4.13.4.1.4 Inconsistency of Test “Microwave-Only” Retrievals and Combined 
Infrared/Microwave Retrievals 

Under some conditions, the cloud-cleared radiance R̂i
4  is poor but all convergence tests 

are passed.  Nevertheless, the test microwave-only retrieval produces low level 

temperatures which differ significantly from those of the second pass retrieval.  This 

generally indicates poor cloud-cleared radiances.  The solution is rejected if the root-

mean-square differences between the temperatures in the lowest 3 km of the test 

microwave-only retrieval !T(p)( )  differs from that of the second pass retrieval by more 

than 1.25K. 

5.4.13.4.2 Geophysical Parameter-Dependent Quality Flags 

The basic approach used in Version 4.0 with regard to quality flags is identical to that of 

Susskind, et al., (2003) with one major exception:  different quality flags are used for 

different geophysical parameters.  Problems dealing with clouds in the field of regard 

(3x3 array of AIRS fields of view) may produce a poor temperature profile in the lower 

troposphere, but should not degrade accuracy of stratospheric temperature or upper 

tropospheric water vapor.  For this reason, a less strict threshold test is applied to accept 

stratospheric temperatures than lower tropospheric temperatures.  Cases are classified 0-6 

according to their ability to pass 6 increasingly more stringent threshold tests.  The higher 

the number, the tighter the test which is passed.  Class 6 passes the tight sea surface 

temperature test, Class 5 passes the standard sea surface temperature test, Class 4 passes 

the lower tropospheric temperature test, Class 3 passes the mid-tropospheric temperature 

test, Class 2 passes the constituent profile test, Class 1 passes the stratospheric 

temperature test, and Class 0 fails the stratospheric temperature test.  The final IR/MW 

retrieval state and associated clear column radiances and cloud and OLR fields are 

provided for all Classes except for 0, in which case the MW/strat IR state and associated 

cloud and OLR parameters are reported.   
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The threshold tests used to assign quality flags are for the most part identical to those in 

Susskind, et al., (2003), with the addition of 4 new tests.  As before, all tests involve only 

AIRS and AMSU radiances.  Susskind, et al., (2003) threshold values for all of these 

tests are shown in the first column of Table 5.4.4.  A test is passed if the value of the 

parameter used in the test is less than or equal to the threshold value.  All tests must be 

passed for the final IR/MW retrieval state to be accepted. 

Version 4 threshold values for each of the 6 Classes described above for all of these tests 

are included in Table 5.4.4.  Tests for some classes use separate threshold values for 

ocean cases and land cases.   When the thresholds are different, the land threshold is 

shown in parenthesis, and is always larger or the test is non-applicable.  Non-applicable 

tests are indicated by X.  Four new tests have also been added: 

� 

A
eff
(1) , which is analogous 

to

� 

A
eff
(4) but is applied after the initial cloud clearing; 

� 

!"5, which is the absolute value of 

the (tuned) difference between the observed brightness temperature of AMSU channel 5 

and that computed from the final retrieval state; 

� 

! tskin, which is the absolute value of the 

difference between the regression surface skin temperature and the final surface skin 

temperature; and RS (Goldberg, et al., 2003), which represents how well the observed 

AIRS radiances can be represented by use of 200 principle components.  Threshold 

values for these tests for all classes are included in Table 5.4.4.  Bold values indicate the 

introduction of a new test or tightening of a previous threshold.  These thresholds were 

obtained empirically, varying one threshold at a time, in an attempt to achieve the best 

accuracy while maintaining reasonable spatial coverage of accepted cases.  Examples of 

the tradeoff between coverage and accuracy are given in the following sections.  In each 

case, all other thresholds are held fixed, with only the value of a single threshold being 

varied. 
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Table 5.4.4. Quality Flag Test Thresholds 
Susskind et al.                    Version 4 
      (2003)  

  1) 2) 3) 4) 5) 6) 
  T(p) good q(p) good T(p) good T(p) good SST good SST good 
Test     Acceptable Profile 200mb&up O3(p) good 3km&up above surface Loose Tight 
 
 

� 

!"  80% 90% 90% 90% 90% 90% 90% 
 

� 

Wliq  .03 X .03 .03 .03 .01 .01 
 

� 

!T(p)  1.25 X X 2.0 2.0 2.0 2.0 
 

� 

A
(4)  3 X 8.0 2.0 2.0 2.0 2.0 

 

� 

Aeff
(4)  8 X X X 15 (X) 8 8 

 

� 

!F  1.75 X 8.0 2.0 (6.0) 1.5 (1.5) 1.5 1.5 
 

� 

Rtemp 1.0 X X 0.75 0.75 0.75 0.75 
 

� 

Rsurf  1.0 X X 0.75 (X) 0.75 (X) 0.75 0.75 
 

� 

Aeff
(1) X 200 200 30 (X) 30 (30) 9 5 

 

� 

!"5  X X X 2.0 2.0 2.0 2.0 
 

� 

! tskin  X X X X 1.5 1.5 1.5 
 
RS X 10 10 4 4 1.2 1.2 
 
 

� 

!"  is the effective cloud fraction 

� 

Wliq is cloud liquid water 

� 

!T(p) represents the difference of retrieved lower tropospheric temperatures between MW only and 
IR/MW     retrievals 

� 

A
(4) represents the final channel noise amplification factor 

� 

Aeff
(4)  represents the final effective channel noise amplification factor 

� 

!F  represents the quality of the initial cloud clearing fit 

� 

Rtemp represents the degree to which the final temperature profile retrieval has converged 

� 

Rsurf  represents the degree to which the final surface parameter retrieval has converged 

� 

Aeff
(1) represents the initial effective channel noise amplification factor 

� 

!"5  represents the agreement between the observed AMSU channel 5 brightness temperature and     
that computed from the final solution 

� 

! tskin  represents the difference between the final surface skin temperature and the regression valve 
RS represents the principle component reconstruction score of the observed AIRS radiances 
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5.4.13.4.2.1 Stratospheric Temperature Test 

This is the most fundamental test and is used to indicate, first and foremost, whether the 

final combined IR/MW retrieval, including associated clear column radiances and cloud 

and OLR parameters should be used, or whether the combined IR/MW retrieval should 

be “rejected” in all its aspects.  The IR/MW retrieval is “rejected” if it is thought to be 

poorer than the MW/strat IR retrieval, which uses no AIRS channels affected by clouds.  

The combined IR/MW retrieval cannot always be used because cloud clearing cannot be 

done under overcast conditions.  If the final retrieval were used under such conditions, 

not only would very poor (too cold) tropospheric and surface skin conditions be derived, 

but using those conditions to determine cloud fields would result in little or no fractional 

cloud cover being derived, because AIRS channel radiances computed using the retrieved 

state would match observed radiances, without the need to add clouds to the scene.  

Products derived from the combined final IR/MW retrieval are rejected if the retrieved 

effective cloud fraction is 90% or more.  Two tests are added to make sure the clear 

column radiances are acceptable: 

� 

A
eff
(1)  must be less than 200 and RS must be less than 

10.  Failure of the first test indicates that the initial cloud clearing step had significant 

problems (note the 

� 

A
eff
(4) threshold was set equal to 8 in Susskind, et al., (2003)) and of 

the second test indicates a significant problem with the observed AIRS radiances (RS 

equal to 1 is the expected value for nominal radiance performance).  Retrieved 

temperatures 200 mb and above (lower pressures) are flagged as good if this test is 

passed. 

5.4.13.4.2.2 Constituent Profile Test 

This test is designed to insure that constituent profiles (O3, CO, H2O) are of sufficient 

accuracy for research use.  Constituent profiles are considerably more variable, and less 

well predicted by models, than are temperature profiles.  In general, the more spatial 

coverage one has, the better, provided the accuracy is adequate.  This is especially true 

with regard to studying interannual variability of monthly mean differences.  This applies 

particularly to water vapor, for which it is desirable to avoid a clear (dry) bias in the 

selection of the cases to be included in generation of the monthly mean fields.  Most CO 

and H2O exists in the troposphere, however, and ability to treat cloud effects on the 
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radiances accurately is more important than with regard to stratospheric temperatures.  

Therefore three tests used in Susskind, et al., (2003), designed to indicate potential cloud 

clearing problems, are included in the constituent profile test as shown in Table 5.4.4.  

The liquid water test threshold is the same as is Susskind, et al., (2003), and the 

thresholds for A(4)  and !F  are considerably less stringent. 

5.4.13.4.2.3 Mid-Tropospheric Temperature Test 

Retrieved mid-tropospheric temperatures are affected more by errors in the treatment of 

clouds in the field of view than are stratospheric temperatures.  Therefore, tighter quality 

control is employed in the mid-tropospheric temperature test.  Susskind and Atlas (2004) 

showed that assimilation of AIRS temperature profiles retrieved from AIRS data, using 

an earlier version of the AIRS retrieval system (which employed a single rejection 

threshold for all geophysical parameters), significantly improved forecast skill.  

Moreover, the improvement was much larger if all accepted cases were used as opposed 

to use of the slightly more accurate, but much less frequent, temperature soundings in 

cases found to be clear.  Therefore, from the data assimilation perspective, there is a 

trade-off between accuracy and spatial coverage, as is also true with regard to the study 

of interannual variability.  The thresholds shown in Table 5.4.4 are designed to maximize 

spatial coverage, while minimizing loss in accuracy.  Four tests used in Susskind, et al., 

(2003) are now included in the mid-tropospheric temperature test.  The first test, !T(p) , 

which contains the difference in the retrieved temperature in the lowest 3 km between the 

combined IR/MW retrieval and the test MW retrieval, is looser than that in Susskind, et 

al., (2003).  In addition, the threshold for !F  has been tightened from that of the 

constituent profile test, but is still less stringent than in Susskind, et al., (2003).  

Thresholds in the three additional new tests, 

� 

A
(4), 

� 

Rtemp, and 

� 

Rsurf  are all somewhat 

tighter than in Susskind, et al., (2003).  Thresholds for 

� 

A
eff
(1)  and RS have also been 

tightened from their values in the constituent test, but are still at moderate values.  A new 

test, 

� 

!"5 has also been added, requiring that the observed brightness temperature for 

AMSU channel 5, sensitive to lower tropospheric temperatures, should agree with that 

computed from the combined IR/MW retrieval to within 2K after tuning is applied.  The 

threshold for 

� 

!F  over land is less restrictive than over ocean because 

� 

!F  is affected by 
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uncertainty in surface emissivity, which is greater over land than over ocean. 

� 

Rsurf  and 

� 

A
eff
(1)  are also affected significantly by uncertainty in surface emissivity and for this 

reason, these tests are not utilized over land, so as to maximize spatial coverage.  Errors 

in surface emissivity do not degrade retrieved mid-tropospheric temperatures appreciably.  

If the mid-tropospheric temperature test is passed, the temperature profile is flagged as 

good above 3 km of the surface. 

Figure 5.4.6 gives examples over global ocean of RMS errors of the 477 mb – 535 mb 

layer mean temperature and the percent cases classified as mid-troposphere good when 

!F  and Rtemp  are varied independently from their Version 4.0 ocean thresholds values 

of 2.0 and 0.75 respectively.  Thresholds for all other tests are set at the appropriate 

values in column 3 of Table 5.4.4.  The RMS error of the 477 mb – 535 mb layer mean 

temperature, using Version 4.0 thresholds, is 0.888K and the percent of cases classified 

as mid-troposphere good is 58.3%.  If the threshold of Rtemp  were set at 0.4 instead of 

0.75, the RMS error or this layer mean temperature would drop to 0.846K, but the 

percentage of cases classified as mid-troposphere good would drop to an unacceptably 

low value of 33.8%.  At an Rtemp  threshold of 1.0, the RMS error rises to 0.904K, with 

only a small increase in percent of cases classified as good.  Analogous statistics for Aeff
(1)  

show a RMS error of 0.815K, with 29.1% classified as good, if the Aeff
(1)  threshold were 

set at 10, rather than 30, and an RMS error of 0.898K, with 62.2% accepted, if the Aeff
(1)  

threshold were set at 40 rather than 30. 
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Figure 5.4.6a. Rtemp: Degree to Which Final Temperature Profile Retrieval has 

Converged 

 

Figure 5.4.6b. Aeff
(1) : Initial Effective Channel Noise Amplification Factor 
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5.4.13.4.2.4 Lower-Tropospheric Temperature Test 

Retrieved temperatures in the lowest 3 km of the atmosphere are most sensitive to cloud 

clearing errors, as well as errors in surface emissivity. 

� 

Aeff  and 

� 

!F  are both measures of 

how well cloud clearing is being done and potential problems with surface emissivity.  

The threshold for 

� 

!F  is now tightened considerably and is tighter than in Susskind et al. 

(2003), in which it had to be relaxed as a compromise so as not to reject the entire profile 

too often. 

� 

A
eff
(1)  is also now used over land, and together with 

� 

!F , flags many cases over 

arid land (in which retrieved surface emissivity can have large errors) as bad.  The test 

� 

! tskin is also introduced which indicates a potential problem with the retrieved surface 

skin temperature. 

Figure 5.4.7 is analogous to Figure 5.4.6, showing RMS errors over global ocean of the 

777 mb – 878 mb layer mean temperature and percent cases classified as lower 

troposphere good as a function of varying ! tskin  and Aeff
(4) .  If the ! tskin  threshold is 

lowered from its Version 4.0 value of 1.5, the percent of cases classified as lower-

troposphere good drops significantly with little change in the RMS errors of the 

remaining cases.  On the other hand, raising the threshold increases errors significantly 

with little change in percent accepted.  The introduction of the threshold of 15 for Aeff
(4)  

into the lower-tropospheric temperature good test results in a small improvement of RMS 

error in the 777 – 878 mb temperature over ocean, with little cost in percent of cases 

accepted. 
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Figure 5.4.7a. ΔTaskin: Difference Between the Final Surface Temperature and the 

Regression Value 

 

Figure 5.4.7b. Aeff
(4) : Final effective Channel Noise Amplification Factor 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 188 

 
5.4.13.4.2.5 Standard and Tight Sea Surface Temperature Tests 

Sea surface temperature is determined quite well by other instruments such as MODIS.  

Therefore, for AIRS to produce a useful sea surface temperature product for climate 

research, it must have very tight quality control.  Surface skin temperature is also the 

product most affected by errors in the cloud clearing process, especially with regard to 

very low clouds.  In the standard SST Test, thresholds for four tests have been tightened 

as shown in Table 5.4.4.  This test is applied only over ocean, as land temperatures are 

less well measured by other instruments.  The test most correlated with sea-surface 

temperature accuracy was 

� 

A
eff
(1) , with lower values indicating more accurate sea-surface 

temperatures.  The percent of accepted sea surface temperatures drops rapidly with 

decreasing acceptance thresholds however.  If 

� 

A
eff
(1)  is less than a second threshold, 

shown for Class 6, then the Tight SST Test is passed. 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 189 

ABBREVIATIONS AND ACRONYMS 
 

AERI             Atmospheric Emitted Radiance Interferometer 

AIRS             Atmospheric Infrared Sounder 

AIRS-RTA    AIRS Radiative Transfer Algorithm 

AMSR-E       Advanced Microwave Scanning Radiometer-EOS 

AMSU          Advanced Microwave Sounding Unit 

AMSU-A      Advanced Microwave Sounding Unit-A (20-channel MW radiometer) 

AMSU-B      Advanced Microwave Sounding Unit-B (5-channel MW radiometer) 

ATBD          Algorithm Theoretical Basis Document 

AVHRR       Advanced Very High Resolution Radiometer 

C                   degrees Centigrade 

COLR           Clear Sky Outgoing Radiation 

DAAC          Distributed Active Archive Center 

DB, dB         decibel 

EOF              Empirical Orthogonal Functions 

EOS              Earth Observing System 

ER-2             Earth Research-2 (NASA's civilian version of Lockheed Skunkworks U-2) 

ESDIS          Earth Science Distributed Information System 

FOR             Field of Regard 

FOV             Field of View 
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FTS              Fourier Transform Spectrometer 

FWHH         Full Width Half Height 

GHz             Gigahertz (109 Hertz, or cycles/second) 

GSFC          Goddard Space Flight Center 

HITRAN     High Resolution Transmission Molecular Absorption Database 

HSB            Humidity Sounder of Brazil 

IMG            Infrared Monitor for Greenhouse Gases 

IR                infrared 

IRIS            Infrared Interferometer Spectrometer 

JPL             Jet Propulsion Laboratory 

K                degrees Kelvin 

kCARTA    kCompressed Atmospheric Radiative Transfer Algorithm 

km              kilometer (103 meters) 

kPa             kilopascal (103 pascal, equivalent to 10 bar) 

L0-L4         Level 0 through Level 4 (processing) 

MHS          Microwave Humidity Sounder 

mm             micrometer, micron (10-6 meter) 

MODIS      Moderate Resolution Imaging Spectroradiometer 

MPM87      Millimeter-wave Propagation Model (Liebe and Layton, 1987) 

MPM89      Millimeter-wave Propagation Model (Liebe, 1989) 
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MPM92      Millimeter-wave Propagation Model (Liebe, et al, 1992) 

MPM93      Millimeter-wave Propagation Model (Liebe, et al, 1993) 

MSU          Microwave Sounder Unit 

MW           microwave 

NASA       National Aeronautics and Space Administration 

NCEP        National Center for Environmental Prediction 

NEDT       Noise Equivalent Temperature Difference 

NEDT       Noise Equivalent Temperature Difference 

NEMS       Nimbus-E Microwave Sounder 

NESDIS    National Environmental Satellite Data and Information Service 

NEXRAD  Next Generation Radar 

NOAA       National Oceanic and Atmospheric Administration 

OLR           Outgoing Longwave Radiation 

PCs            Principle Components 

PCSs       Principle Components Scores 

PGE           Product Generation Executive 

QC             Quality Control 

QA             Quality Assessment 

OPTRAN   Optical Path TRANsmittance 

RH             Relative Humidity 
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RMS       Root Mean Square 

RTA          Radiative Transfer Algorithm 

SDPS        Science Data Processing System 

SIRS         Satellite Infrared Radiation Spectrometer 

SRF           Spectral Response Function 

SSM/T2    Special Sensor Microwave/Water Vapor Profiler 

SST           Surface Skin Temperature 

SVD          Singular Value Decomposition 

THz           Terahertz (1012 Hertz) 

TIGR        TOVS Initial Guess Retrieval 

TIROS      Television Infrared Observation Satellite 

TLSCF      Team Leader Science Computing Facility 

TPW       Total Precipitable Water 

TOVS       TIROS Operational Vertical Sounder 

VTPR       Vertical Temperature Profile Radiometer 
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APPENDICES 
A. GENERATION OF LEVEL 3 PRODUCTS 

Level 3 products are quality controlled space-time averages of individual geophysical 

parameters derived on a Field of Regard (FOR) basis.  Level 3 products are produced on 

a 1° x 1° latitude-longitude spatial grid, with ascending (1:30 PM local time) and 

descending (1:30 AM local time) orbits gridded separately.  Level 3 products are 

produced on a daily, 8 day, and monthly mean basis.  No data is contained in a grid box if 

no quality controlled soundings were produced. 

A.1 Quality Control Used to produce Different level 3 Fields 

Different geophysical parameters are included in the generation of Level 3 fields 

according to the class the sounding belongs to, as described in the previous section.  

Examples of daily level 3 fields for different geophysical parameters are given in Section 

C. 

A.1.1 Cloud Parameters, OLR, and Clear Sky OLR 

Cloud parameters, OLR, and Clear sky OLR are included in the Level 3 product for all 

cases in which a MW/strat IR retrieval has been produced.  This includes classes 1-6 as 

well as Class 0 (MW/strat IR retrieval only). 

A.1.2 Atmospheric Temperature 

Atmospheric temperatures 200 mb and above are included in the Level 3 product for all 

soundings passing the Stratospheric Temperature Test.  Atmospheric temperatures 

beneath 200 mb are included in the Level 3 product for all cases passing the Mid-

tropospheric Temperature Test.  As is shown in Section C.1, use of this looser test is 

necessary when producing Level 3 temperatures in the lower troposphere so as to obtain 

adequate spatial coverage over land. 

A.1.3 Constituent  Profiles – H2O, O3, and CO 

Constituent profiles are included in the Level 3 product for all cases passing the 

constituent profile test. 
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A.1.4 Surface Skin Temperature and Spectral Emissivity 

Non-frozen ocean surface parameters are included in the Level 3 product for all cases 

passing the Standard Sea Surface Temperature Test.  Surface parameters for other than 

non-frozen ocean cases, referred to as land, are included in the Level 3 product if the 

Mid-tropospheric Temperature Test is passed.  As shown in Section 6, this relatively 

loose test is used over land to allow for adequate spatial coverage, just as is done for 

lower tropospheric temperature Level 3 products.  Examples of sample monthly mean 

fields and their interannual differences are given in Section C.2. 
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B. Expected Improvements in the AIRS Science Team 
Version 5 Physical Retrieval Algorithm 

A number of improvements are being made to the AIRS Science Team algorithm that 

will be implemented in Version 5.0. A major improvement has been made to the physics 

of the AIRS RTA, which now accurately accounts for effects of non-LTE on AIRS 

shortwave stratospheric sounding channels during the day.  This allows for potential use 

of all AIRS shortwave channels in the physical temperature profile retrieval step, both 

day and night.  As a result of other improvements in the physics of the RTA, it was also 

no longer necessary to add the term Nii,  representing an empirical estimate of 

uncertainty in computed radiances arising from errors in the RTA physics, to the AIRS 

channel noise covariance matrix, as done in equation 5.4.33 used in Version 4.0.  A new 

term is included in the channel noise covariance matrix allowing for uncertainty in the 

CO2 concentration on computed channel radiances.  In addition, the resulting AIRS 

tuning coefficients based on the new RTA are now significantly smaller than those used 

in Version 4.0. 

Other expected improvements in Version 5.0 result from re-evaluation of the number of 

steps in the overall retrieval process and the channels, functions, and damping parameters 

used in all retrieval steps including the possibility of using different channel sets, 

functions, and damping parameters over land and ocean.  The most significant 

improvement in Version 5.0 results from development of a new methodology to provide 

accurate error estimates for retrieved geophysical parameters, including clear column 

radiances, and a new quality control methodology based solely on the error estimates of 

the retrieval geophysical parameters. 
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C. Results Using Version 4 

Chapter 5.0 described the Version 4 methodology used to derive level 2 and level 3 

products from the AIRS/AMSU/HSB observations.  One of the objectives of the 

methodology is to be able to derive high quality soundings and clear column radiances 

from AIRS/AMSU observations in the presence of clouds.  The cloud-clearing process 

does introduce noise in the derived cloud-cleared radiances (Susskind, et al., 2003).  

Therefore, one would expect a degradation in retrieval accuracy with increasing cloud 

cover.  It is critical that this degradation should not be appreciable if the retrieved 

parameters are to be useful for weather and climate research purposes.  To demonstrate 

this, the accuracy of global geophysical parameters derived from AIRS/AMSU 

observations on 29 September 2004 was evaluated by comparison with a co-located 

ECMWF 3-hour forecast.  The ECMWF forecast has errors of its own, and this should be 

borne in mind when interpreting the results of the comparisons.  Instead of an assessment 

of the absolute accuracy of the retrieved quantities, we concentrate on the degree of 

degradation in “accuracy,” as defined by agreement with ECMWF, occurring with 

increasing cloud cover.  Errors in the ECMWF “truth” may decrease the apparent 

differences in accuracy between clear and cloudy cases, but only by making the clear 

cases appear less accurate than they actually are, and not by making the cloudy cases 

appear more accurate than they are.  In all cases, the quality control methodology 

described in Sections 5.4.11.4.2 (level 2) and 5.4.11.5 (level 3) is used to include (or 

exclude) data for individual retrieved geophysical parameters in the figures shown. 
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C.1 Results for a Single Day 

Figure C.1 shows in gray the number of cases for each retrieved effective fractional cloud 

cover, in 0.5 percent bins, for the whole day 29 September 2004.  The effective fractional 

cloud cover is given by the product of the fraction of the field of view covered by clouds 

and the cloud emissivity at 11 µm.  The average global effective cloudiness was 

determined to be 44.11 percent.  There are peaks at 0 percent and 100 percent effective 

cloud cover, with a very smooth distribution at intermediate effective cloud fractions.  

The discontinuity at 90 percent cloud cover is an artifact arising from the switch from 

clouds retrieved primarily using the IR/MW retrieved state to clouds retrieved using the 

MW/strat IR state.  Also shown, in different colors, is the percent of accepted retrievals 

as a function of retrieved effective cloud cover for all cases passing the Stratospheric 

Temperature Test, the Constituent Test, the Mid-Tropospheric Temperature Test, and the 

Lower Tropospheric Temperature Test, as well as for non-frozen ocean cases passing the 

standard SST Test and the Tight SST Test.  Almost all cases with retrieved effective 

cloud fraction less than 90 percent pass the Stratospheric Temperature Test, with the 

percent accepted falling slowly with increasing cloud cover, from close to 100 percent at 

low cloud fractions to about 65 percent at close to 90 percent effective cloud cover. 79.6 

percent of the global cases pass the Stratospheric Temperature Test, with an average 

effective cloud fraction of 33.08 percent.  78.4 percent of the cases pass the slightly more 

restrictive Constituent Test, with an average effective cloud fraction of 32.74 percent.  

48.5 percent of the global cases pass the Mid-Tropospheric Temperature Test, with an 

acceptance rate of about 80 percent for low effective cloud fraction, falling to about 20 

percent at 80 percent effective cloud fraction, and 10 percent at 90 percent effective cloud 

fraction.  The previous acceptance methodology (Susskind, et al., 2003) rejected all cases 

with effective cloud fraction greater than 80 percent.  The mean effective cloud fraction 

for all cases passing the Mid-Tropospheric Temperature Test is 23.89 percent. Only 26.3 

percent of the cases pass the Lower Tropospheric Temperature Test, primarily over 

ocean, with an acceptance rate near 55 percent for low cloud fractions falling to 5 percent 

at 80 percent effective cloud fraction and 2 percent at 90 percent effective cloud fraction, 

and with an average effective cloud fraction of 18.33 percent.  The SST acceptance tests 

are applied only over non-frozen ocean.  The standard SST Test accepts 23.3 percent of 
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the ocean cases, and with an acceptance rate of roughly 50 percent under nearly clear 

conditions, with an average cloud fraction of 9.18 percent, while the Tight SST Test 

accepts only 10.6 percent of the cases, with an average effective cloud fraction of 5.96 

percent.  The Tight SST Test allows for more cases than does the clear test (Susskind, et 

al., 2003) which includes only 8.2 percent of the non-frozen cases. 

 

Figure C.1. Percent Accepted vs. Effective Cloud Fraction 
 

Figure C.2a shows the retrieved effective cloud top pressure and effective cloud fraction 

for ascending orbits on 29 September 2004 in 1°x1° latitude-longitude bins.  The area 

weighted global mean effective cloud fraction and its spatial standard deviation are 

indicated in the figure.  The results are presented in terms of cloud fraction in 5 groups, 

0-20 percent, 20-40 percent, etc. with darker colors indicating greater cloud cover.  These 

groups are shown in each of 7 colors, indicative of cloud top pressure.  The reds and 

purples indicate the highest clouds, and the yellows and oranges the lowest clouds.  

Cloud fields are retrieved for all cases in which valid AIRS/AMSU observations exist.  

Gray means no data was observed. 
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Figure C.2. Retrieved Effective Cloud Top Pressure and Effective Cloud Fraction 

 

Figure C.2b shows the retrieved 200-mb temperature field (K).  This demonstrates the 

coverage of cases where stratospheric temperatures are accepted.  Gray indicates regions 

where either no valid observations existed or the stratospheric temperature retrieval was 

rejected, generally in regions of cloud cover 90-100 percent.  Figure C.2c shows retrieved 

values of total precipitable water vapor (cm).  This demonstrates the coverage of 

constituent profiles.  Figure C.2d shows retrieved values of 500-mb temperature, 

demonstrating coverage of accepted mid-tropospheric temperatures.  Gaps in the data 

coverage of mid-tropospheric temperature due to extensive cloud cover are larger than for 

stratospheric temperatures.  Retrieved fields are quite coherent, and show no apparent 

artifacts due to clouds in the field of view.  Water vapor has considerably more fine scale 

structure than temperature and contains some very large spatial gradients.  The extent of 

gaps in water vapor coverage due to areas of rejected retrievals (retrievals which fail the 

Constituent Test) are considerably less than with regard to the Mid-Tropospheric 
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Temperature Test, but somewhat larger than with regard to the very loose Stratospheric 

Temperature Test.  As shown in Figure C.2, the percent of cases accepted as a function of 

increasing cloud cover for these two classes of retrievals is almost identical.  

 

Figure C.3. Temperature Differences, AIRS minus ECMWF 

Figure C.3a shows the difference between the retrieved 700-mb temperature and the 

ECMWF 3-hour forecast field for ascending orbits on 29 September 2004, for those cases 

passing the Lower Tropospheric Temperature Test, while Figure C.3b shows the same 

field for all cases passing the looser Mid-Tropospheric Temperature Test.  The difference 

in spatial coverage is significant, particularly over land where 700-mb temperature 

retrievals appear to be biased warm compared to the ECMWF forecast.  Statistics 

showing the area weighted global mean difference from ECMWF and the spatial standard 

deviation of the difference are included in the figures.  The overall accuracy is somewhat 

better with the tighter Lower Tropospheric Temperature acceptance criteria, and this 

difference is significant for data assimilation purposes.  When statistics are shown 

depicting the accuracy of lower tropospheric temperatures (Figures C.6 and C.7), only 
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cases passing the Lower Tropospheric Temperature Test are included.  All data shown in 

Figure C.3b is included in the generation of lower tropospheric temperature monthly 

mean fields however, so as to allow for global coverage, especially over arid land 

regions. 

Figures C.3c and C.3d shows the differences of retrieved ocean surface skin temperature 

(SST) from the ECMWF SST analysis for the ascending orbits of 29 September 2004.  

Figure C.3c includes only those cases passing the Tight SST Test and Figure C.3d also 

includes those cases passing the standard SST Test.  A considerable increase in yield is 

obtained using the standard SST Test, with some degradation in accuracy of sea surface 

temperatures.  The biases compared to ECMWF are negative in both cases, with a larger 

negative bias found in cases passing the standard SST Test.  Errors due to cloud clearing 

are typically negative, resulting from under-correcting for effects of clouds in the field of 

view.  This would imply that the Tight SST Test is eliminating more cases where cloud- 

clearing errors are resulting in poorer sea surface temperatures.   Caution must be taken 

however because the ECMWF “truth” may have its own biases. 

Figure C.4 shows the number of combined daytime and nighttime non-frozen ocean cases 

between 50°N and 50°S, on 29 September 2004, as a function of the difference of the 

retrieved SST from the ECMWF analysis in bins of 0.2 K.  Results are shown for cases 

which passed the Tight SST Test, the standard SST Test, and the Lower Tropospheric 

Temperature Test. Figure C.3c and C.3d showed the spatial distribution differences for 

the daytime orbits applying each of the SST Tests.  The percent of all non-frozen oceanic 

cases 50°N-50°S passing each test is included in the statistics, as well as the mean 

difference from ECMWF, the standard deviation of the difference, and the percentage of 

outliers, defined as cases passing the test that differ from ECMWF by more than 3K from 

the mean difference.  There is a small negative bias of retrieved Sea Surface 

Temperatures compared to ECMWF, that increases with increasing acceptance rate, from 

–0.29K for cases within the Tight SST Test, to – 0.72K for cases passing the Lower 

Tropospheric Temperature Test.  The standard deviation of the cases from ECMWF also 

increases slightly.  On the other hand, the number of primarily cold outliers increases 

significantly, from 0.62 percent to 5.90 percent.  Therefore, the Lower Tropospheric 
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Temperature Test by itself is not adequate for the purpose of producing accurate monthly 

mean sea surface temperatures.   As with all the test thresholds, experiments are being 

conducted to optimize the trade-off between spatial coverage and accuracy for best use in 

studying interannual monthly mean sea-surface temperature differences. 

 

 

 
Figure C.4. Surface Skin Temperature Difference from ECMWF 

 

Figure C.5a shows RMS differences from the ECMWF 3-hour forecast of retrieved 1-km 

layer mean tropospheric temperatures, and 3-km layer mean stratospheric temperatures, 

for non-frozen ocean cases on 29 September 2004.  Results shown are for all cases 

passing the Stratospheric Temperature Test, the Mid-Tropospheric Temperature Test, the 

Lower Tropospheric Temperature Test, the standard SST Test, the Tight SST Test.  

Results for those cases passing an additional clear test, as defined by Susskind, et al., 

(2003), are also included in the figure.  The number of cases and percentage of all cases 

included in the statistics are indicated for each test. 
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Figure C5. C.5a (left) and C.5b (right) 

Accuracies of retrieved stratospheric temperature, as compared to ECMWF “truth,” 

improve slightly with increasing stringency of the tests, but are not appreciably different 

from one another for cases passing any of the quality tests.  The large differences from 

ECMWF above 15 mb are primarily a result of the lower accuracy of the ECMWF 

“truth” in the upper stratosphere.  Tropospheric soundings passing either of the 

tropospheric quality control tests agree with the ECMWF forecast on the order of 1K.  

Part of this difference is due to uncertainty in the ECMWF forecast.  It is interesting to 

note that soundings for the 86 percent of the cases for which the Stratospheric 

Temperature Test was passed are of relatively high quality throughout the troposphere as 

well, with an RMS difference from ECMWF on the order of 1.7K in the lowest 1 km of 

the atmosphere.  This shows that the cloud clearing methodology works well in up to 90 

percent cloud cover.  Nevertheless, the accuracy of all these soundings is not considered 

high enough for either data assimilation or climate purposes.  There is significant further 

improvement in tropospheric temperature profile accuracy, compared to that for cases 

passing the tropospheric temperature profile tests, using the smaller subset of cases 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 205 

passing the standard SST Test (23.3 percent of the ocean cases) but relatively little 

further improvement in those cases passing the Tight SST Test (10.6 percent of the 

cases), or the additional clear test (8.2 percent of the cases).   For data assimilation 

purposes, we recommend experiments assimilating temperature profiles passing only the 

standard SST Test, on the one hand, and passing the test for the appropriate for the level 

of the temperature on the other hand, to assess the trade-off between coverage and 

accuracy.   One might also consider assimilating lower tropospheric temperatures in cases 

passing the Mid-Tropospheric Temperature Test over ocean to further increase the spatial 

coverage of the data being assimilated. 

Figure C.5b shows analogous results for global accepted retrievals, including cases 

passing the Stratospheric Temperature Test, the Mid and Lower-Tropospheric 

Temperature Tests, and the clear test (which, over land, ice, and coasts, must also pass 

the Lower Troposphere Temperature Test).  Error statistics in the stratosphere degrade 

somewhat for cases passing the Stratospheric Temperature Test (79.6 percent of all cases) 

compared to either of the Tropospheric Temperature Tests (48.5 percent and 25.3 

percent).  The increase in spatial coverage using the Stratospheric Temperature Test is 

much more significant globally, compared to using either of the tropospheric tests, than 

over non-frozen ocean.  We therefore recommend using the Stratospheric Temperature 

Test for stratospheric temperatures for both data assimilation and climate purposes.  

Global agreement with ECMWF is slightly poorer than over ocean.  A much larger 

difference in agreement with ECMWF occurs between all cases passing the Lower 

Tropospheric Temperature Test and the Mid-Tropospheric Temperature Test than over 

ocean, especially in the lower troposphere.  For data assimilation purposes, we feel lower 

tropospheric temperatures retrieved over land should not be used when the Lower 

Tropospheric Temperature Test is not passed.  Globally, 3.7 percent of the cases passed 

the clear test, most of which were over non-frozen ocean.  Retrievals in these cases are 

very accurate, but the global spatial coverage is very poor. 

Figures C.6a and C.6b are analogous to Figures C.5a and C.5b but show statistics only 

for cases at a given pressure level passing the appropriate quality test.  Statistics for cases 

passing the clear test (identical to those shown in Figures C.5a and C.5b) are included for 
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comparison.  Also shown is the accuracy of the regression first guess temperature profiles 

for all accepted retrievals and under clear conditions.  The accuracy of the physical 

retrieval is higher than the regression, and more so under cloudy conditions than clear 

conditions.  Part of this is due to the increased accuracy of R̂i
4 , used to derive the final 

temperature profile, compared to R̂i
1 , used to derive the regression first guess. 

 
Figure C.6. C.6a (left) and C.6b (right) 

Figure C.6b also includes analogous results determined from the global simulation of 

AIRS performance shown in Susskind, et al., (2003) for all accepted cases (red) and clear 

cases (pink).  In simulation, the truth is known perfectly, while with real data, the 3-hour 

ECMWF forecast is taken as a proxy for truth.  With real data, the degree of degradation 

for tropospheric accuracy in cloudy retrievals, compared to clear cases, is of the order of 

a few tenths of a degree, just as it was in simulation.  Differences from “truth” are poorer 

with real data than in simulation however.  Two major causes of this degradation are:  1) 

perfect physics and perfect characterization of the AMSU antenna temperatures were 

assumed in simulation; and 2) the “truth” has errors of its own in real data.  The 
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degradation of sounding accuracy in the presence of “real clouds,” as compared to 

soundings in clear cases, appears to be similar to that implied by simulation, as does the 

accuracy of mid tropospheric temperature retrievals for clear cases.   

 

Figure C.7. AIRS RMS Temperature Difference from Truth vs. Effective Cloud 
Fraction 

Figure C.7 shows the RMS difference between retrieved 1-km tropospheric layer mean 

temperatures and the collocated ECMWF 3-hour forecast for all accepted cases as a 

function of retrieved effective cloud fraction.  Results are shown for each of the 8 lowest 

1-km layers of the atmosphere.  Only those cases passing the appropriate temperature 

profile test are included in the statistics.  Agreement degrades with increasing cloud 

cover, but only very slowly.  The largest errors are in the 2 lowest layers in the 

atmosphere, at moderate to high cloud fraction, where the percentage acceptance rate is 

low.  This degradation is similar to that shown in an analogous figure in Susskind, et al., 

(2003) for simulated retrievals.  RMS temperature differences from ECMWF below 600 

mb are somewhat larger than the 1-K goal for retrieval accuracy.  Part of this difference 

can be attributed to the fact that the ECMWF forecast is not perfect.  It is also possible 
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that the accuracy of the ECMWF forecast may be somewhat poorer with increasing cloud 

cover. 

Figures C.8a and C.8b are analogous to Figures C.5a and C.5b, but show RMS percent 

difference of retrieved 1-km layer precipitable water from the ECMWF “truth.”  In these, 

and other water vapor statistics, the RMS percent difference weights percent difference in 

a given case by the “truth,” so as not to inflate percent differences for very dry cases, 

according to  
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where qk
ret  and qk

tru  are the retrieved and true values of water vapor for case k. These 

statistics should be used with caution, especially in the mid-upper troposphere, where 

considerable errors could exist in the ECMWF “truth.”  Nevertheless, over ocean, 

statistics are not appreciably different for cases passing the different tropospheric and 

ocean skin temperature thresholds.  As with regard to temperature, a larger degradation 

occurs in agreement of humidity profile with ECMWF in the mid-lower troposphere over 

land when the looser constituent profile criteria are used.  We recommend at this time to 

use the appropriate temperature test when attempting to assimilate water vapor at a given 

level of the atmosphere.  Soundings passing either tropospheric temperature test also pass 

the constituent profile test because the temperature profile criteria are equal to, or tighter 

than, those in the constituent profile test.  For climate purposes, we recommend including 

all cases passing the Constituent Test in the generation of the level 3 product, so as to 

minimize a dry bias in the sample. 

Figures C.9a,b are analogous to Figures C.7a,b and show water vapor percent differences 

from “truth” for clear cases and cases passing the temperature test for the appropriate 

level.  Figure C.9b includes analogous results found in simulation (Susskind, et al., 
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2003). There is not a significant difference in water vapor retrieval accuracy occurring 

between clear cases and all cases passing the appropriate temperature profile test with 

real data, as in simulation. 

 

 

 
Figure C.8. C.8a (left) and C.8b (right) 

Figure C.10 is analogous to Figure C.7, but for percent differences from ECMWF of 1- 

km layer precipitable water as a function of retrieved effective fractional cloud cover.  

Only soundings passing the appropriate temperature profile test for a given level of the 

atmosphere (Mid-Tropospheric Temperature Test or Lower Tropospheric Temperature 

Test) are included in the statistics, as was done in Figure C.7.  Agreement with ECMWF 

degrades slightly with increasing cloud cover primarily in the lowest 2 km of the 

atmosphere, but not appreciably.  Part of this could be due to sampling differences, 

because the AIRS retrievals determine water vapor in the clear portions of the partially 

cloudy scene, while the forecast values are for the whole scene. 
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Figure C.9. C.9a (left) and C.9b (right) 

The fundamental parameter used in the determination of geophysical parameters from 

AIRS/AMSU data is the clear column radiance 

� 

ˆ R i, which represents the radiance AIRS 

channel i “would have seen” if no clouds were in the field of view.  Geophysical 

parameters are determined which are consistent with 

� 

ˆ R i.  Derived geophysical 

parameters whose accuracy degrades slowly with increasing cloud cover implies that the 

accuracy of 

� 

ˆ R i also degrades slowly with increasing cloud cover.   

� 

ˆ R i is an important 

geophysical parameter derived from AIRS in its own right. 

Figure C.11a shows the mean value of 

� 

ˆ R i (in brightness temperature units) from 650 cm-1 

to 756 cm-1 for all non-frozen ocean cases 50°N – 50°S on 6 September 2002 passing the 

Tight SST Test.  The most opaque portion of the spectrum is near 667.5 cm-1, and is 

primarily sensitive to atmospheric temperatures near 1 mb (50 km).  Radiances in the 

surrounding spectral region are also primarily sensitive only to stratospheric temperatures 

and are not affected by clouds in the field of view.   Radiances at frequencies greater than 
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690 cm-1 see increasing amounts of the troposphere, especially between absorption lines 

(the locally higher brightness temperatures) and are increasingly affected by cloud cover 

with increasing frequency.  Radiances between lines at frequencies higher than 740 cm-1 

are also increasingly sensitive to contributions from the ocean surface. 

 

 
Figure C10. AIRS RMS Precipitable Water Percent Difference from Truth vs. 

Effective Cloud Fraction 

Figures C.11b and C.11c show the mean and standard deviation of the (tuned) differences 

between 

� 

ˆ R i and 

� 

Ri computed from the “truth” for all cases in this geographic domain 

passing the Tight SST Test, the standard SST Test, the Lower Tropospheric Temperature 

Test, and the Mid-Tropospheric Temperature Test, respectively.  Figure C.11c also 

contains the channel noise spectrum.  In this calculation, the “truth” is taken as the 

ECMWF forecast of temperature-moisture-ozone profile, along with the ECMWF ocean 

surface skin temperature.  The Masuda Ocean surface emissivity model (1988), revised 

by Wu and Smith (1997), was used to generate the ocean surface emissivities in the 

calculation of the expected true radiances, assuming a surface wind speed of 5 m/sec.  

The surface contribution is the biggest uncertainty in the computation of the “truth” 
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radiances because of errors in both the true ocean skin temperature and in the true surface 

emissivity.   

 

Figure C.11. Tuned Clear Column Brightness Temperature minus "Truth" 

It is apparent that the difference of clear column radiances from those computed from the 

truth increases only slightly in the more difficult cloud cases, and in general matches 

expected radiances to within the AIRS noise level.  Standard deviations of observed 

minus computed brightness temperatures for stratospheric sounding channels are actually 

lower than the channel noise, because radiances of a AIRS fields of view are averaged 

together to produce the cloud cleared radiances.  The increasing difference of clear 

column radiances from those computed from the “truth” between absorption lines above 

740 cm-1 has a large component arising from errors in the “truth.” 

It is noteworthy that the biases of observed minus computed brightness temperatures are 

essentially zero for all cases, with some small negative biases between absorption lines at 

the frequencies sensitive to the lowest portions of the atmosphere in cases passing the 

Mid-Tropospheric Temperature Test as a result of small cloud clearing errors in these 
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cases.  First of all, this implies that the tuning coefficients derived from clear ocean night 

ocean cases on 6 September 2002 are equally well applicable to a much larger ensemble 

of ocean cases on the same day.  Secondly, it demonstrates that clear column radiances 

for cases passing the Mid-Tropospheric Temperature Test are essentially unbiased at 

most sounding channel frequencies.  The standard deviations of the clear column 

radiances from “truth” are also only slightly dependent on the degree of cloud 

contamination.  Errors in the “truth” dominate the standard deviations shown in Figure 

C.11c, especially at 667.5 cm-1, which is primarily sensitive to 1 mb temperature, and at 

frequencies sensitive to the ocean surface.  In addition, the larger standard deviation at 

679.31 cm-1 is a result of significant absorption by O3, and those at 729.0 cm-1, 730.8    

cm-1, and 745.1 cm-1, and 754.4 cm-1 result from significant absorption by H2O. 

Figure C.12 shows histograms of the difference between observed and computed 

brightness temperatures for the two channels indicated by the black dots in Figure C.11, 

at 724.52 cm-1 and 749.19 cm-1 respectively.  These frequencies are primarily sensitive to 

temperatures at 580 mb and 900 mb respectively, with a large surface contribution at 

749.19 cm-1.  Results are shown for the four most stringent quality tests.  The differences 

between the accuracy of clear column radiances at 724.52 cm-1, for cases passing the 

different quality tests with spatial coverage ranging from 9.14 percent to 58.27 percent, 

are miniscule, with essentially no outliers in any category.  Differences are somewhat 

larger at 749.19 cm-1, but increase only slightly for cases passing the Mid-Tropospheric 

Temperature Test.  For this reason, all clear column radiances are flagged as good for 

those cases passing the Mid-Tropospheric Temperature Test.   

It is apparent from Figure C.11 that the tuning coefficients derived for clear ocean night 

cases on 6 September 2002 are applicable to all ocean night cases on that day.  Figures 

6.13a-c show analogous results for all (global) cases passing the Mid-Tropospheric 

Temperature Test on 6 September 2002 and 25 January 2003 corresponding to a different 

season and year.  The biases (necessary tuning) are shown to be globally applicable, and 

also constant in time.  Standard deviations from the truth at channels more sensitive to the 

surface are somewhat larger than for the non-frozen ocean cases because of larger errors 

in the “truth” arising from greater uncertainty in both surface skin temperature and 
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spectral emissivity. The sounding results for September 2004 shown in this paper further 

demonstrates the stability of the tuning coefficients derived from September 2002 

observations. 

 
Figure C12a. Brightness Temperature Difference, 724.52 cm-1  

 

Operational numerical weather prediction centers currently assimilate radiance 

observations from IR sounders only for those cases thought to be unaffected by clouds 

(McNally, et al., 2000).  This criterion severely limits the number of IR channel radiances 

being used in the assimilation processes, and tends to minimize the potential 

improvement in forecast skill achievable from optimal use of AIRS radiance 

observations.  We encourage operational centers to attempt to use AIRS derived clear 

column radiances in their assimilation, applying the same quality control so as to accept 

only those clear column radiances “thought to be unaffected by clouds.” 
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Figure C12b. Brightness Temperature Difference, 749.19 cm-1 

 

 
Figure C.13. Tuned Clear Column Brightness Temperature minus "Truth" 
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C.2 Sample Monthly Mean Fields and their Interannual 
Differences 
C.2.1 Atmospheric and Skin Temperatures 

In generating monthly mean fields of atmospheric temperatures, the appropriate level 

dependent quality flags as described in Section 5.4.11.4.2 are used.  For temperatures at 

pressures 200 mb and lower (higher altitude), all soundings passing the Stratospheric 

Temperature Test are averaged.  For atmospheric temperatures at all other levels, all 

soundings passing the Mid-Tropospheric Temperature Test are averaged. 

Figure C.14a shows the monthly mean field for January 2004 of 500-mb temperature 

derived from accepted AIRS/AMSU retrievals.   Monthly mean fields containing only 

AM and PM overpasses are generated separately and then averaged together with equal 

weight to produce the monthly mean field.  Figure C.15b shows the difference between 

the AIRS retrievals and the collocated ECMWF 3-hour forecast 500-mb temperatures.  

All AIRS products are derived and shown on a 1°x1° latitude-longitude grid.  White 

indicates agreement to within 0.5K, with each color interval corresponding to differences 

increasing by 1K (0.5–1.5, 1.5-2.5, etc.), with shades of red meaning AIRS is warmer.  

The global mean difference between AIRS and ECMWF 500-mb monthly mean 

temperature is –0.01K and the spatial standard deviation is 0.45K. This is a positive and 

expected result, as the ECMWF forecast is very accurate at 500 mb.  The largest 

differences occur at the highest latitudes, where AIRS retrievals are 0.5 to 1.5K cooler 

than ECMWF.   

Figures C.14c  and  C.14d  show  analogous  results   for  the  difference  of  monthly  

mean 500-mb temperature between January 2004 and January 2003.  Figure C.14c shows 

significant interannual differences in monthly mean 500-mb temperatures, with a spatial 

standard deviation of 1.54K between the 2 months, and a global cooling of 0.36K in 

January 2004 compared to January 2003.  Virtually identical features appear in the 

ECMWF forecast (not shown).   Particular attention should be given to the areas near 

45°N,150°W; 50°S,160°W; 50°S,40°W; 50°S,20°E; and 50°S,100°E; in which January 

2004 was substantially warmer than January 2003. 
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Figure C.14. Monthly Mean, 500 mb Temperature (K) 

 

The difference between the two interannual difference fields, shown in Figure C.14d, 

indicates excellent agreement in global mean cooling (AIRS has larger cooling than 

ECMWF by 0.05K), spatial standard deviation (0.39K), and spatial correlation 0.97.  The 

small spatially coherent differences in 500-mb temperature between AIRS and ECMWF 

in Figure C.15b cancel out for the most part in the interannual difference field.  This is 

reflected in the fact that the spatial standard deviation of the difference of interannual 

difference field is less than of the monthly mean field.  We are investigating the cause of 

these small regional biases, which do not appear to be very significant in the interannual 

difference sense. 

Figures C.15a-C.15d show analogous results for 1-mb temperature, a level of the 

atmosphere at which ECMWF should be somewhat less accurate.  AIRS is biased warm 

globally compared to ECMWF at 1 mb by 1.16K, and the spatial standard deviation 

between the two fields (2.62K) is significantly larger than it is at 500 mb.  The monthly 
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mean temperature differences between January 2004 and January 2003 are much larger at 

1 mb than 500 mb, especially north of 60°N, with considerable cooling of more than 20K 

near the North pole.  AIRS data shows a global cooling of 1.47K at 1 mb, with a spatial 

standard deviation of 4.13K.   AIRS agrees reasonably well with ECMWF in terms of 

global mean, standard deviation, and correlation, but the difference in the spatial standard 

deviation of the difference of AIRS from ECMWF is considerably larger than at 500 mb, 

at which ECMWF is globally more accurate.  AIRS is most likely adding information at 

this level from the climate perspective.  It should be noted that, as at 500 mb, the spatial 

standard deviation of the difference of the interannual difference fields is considerably 

less than of the difference of the monthly mean fields.   

 

 
Figure C.15. Monthly Mean, 1 mb Temperature (K) 
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Table C.1 shows analogous statistics for AIRS January 2004 global mean temperatures 

and differences of global mean temperatures between January 2004 and January 2003, as 

well as the difference between AIRS and ECMWF of the global mean interannual 

differences, the spatial standard deviation of the two interannual difference fields, and 

their correlation. 

Table C.1. Monthly Mean Temperatures (K) 
January 2004                                                 January 2004 – January 2003 

 
                                      AIRS               AIRS-ECMWF            AIRS                        AIRS-ECMWF  

Pressure mean STD mean STD mean STD mean STD corr 
          
 1000 mb    287.42  11.06     0.53   1.15    -0.05   1.44     0.14   0.90   0.82   
  850 mb    280.32  10.79     0.08   0.86    -0.09   1.69     0.04   0.71   0.93   
  700 mb    273.23   9.95     0.31   0.51    -0.28   1.54    -0.05   0.45   0.97   
  600 mb    266.27  10.00     0.40   0.43    -0.15   1.55     0.07   0.42   0.98 
  500 mb    257.39  10.36    -0.01   0.45    -0.36   1.54    -0.05   0.39   0.97   
  400 mb    246.02   9.99    -0.40   0.39    -0.45   1.50    -0.15   0.39   0.95   
  300 mb    232.58   8.35    -0.35   0.43    -0.10   1.33     0.03   0.46   0.94   
  200 mb    220.16   2.99     0.35   0.56    -0.06   1.99    -0.13   0.53   0.99   
  150 mb    212.85   6.99     0.14   0.60     0.23   2.07     0.06   0.53   0.99 
  100 mb    203.85  12.36    -0.46   0.64    -0.10   2.57     0.16   0.84   0.99   
   70 mb    204.96  11.04     0.26   0.80    -1.01   2.35    -0.21   0.81   0.99   
   50 mb    209.95   7.71     0.22   0.79    -0.53   2.37     0.04   1.03   0.99   
   30 mb    216.08   5.64    -0.17   0.67     0.10   3.05     0.09   0.91   0.99   
   10 mb    228.33   6.05     0.09   0.91    -0.06   2.74     0.02   0.72   0.99   
    1 mb    265.20   8.96     1.16   2.62    -1.47   4.13     0.26   1.76   0.99 

 

Global mean interannual monthly mean temperature differences between January 2004 

and January 2003 as retrieved from AIRS vary somewhat regularly as a function of 

height.  There is cooling up to 200 mb, having a peak value in the region 400-500 mb, but 

being near 0.0K at 1000 mb and 200 mb.  In the stratosphere, January 2004 is again 

cooler than January 2003, primarily in the region 70 mb to 50 mb and also at 1 mb.  The 

magnitude of the biases in interannual global mean temperature differences determined 

from AIRS, and contained in the ECMWF 3-hour forecast, are generally less than 0.1K 

and are considerably smaller than those of monthly mean temperatures themselves.  This 

shows that the small regional dependent biases in monthly mean temperatures tend to 

cancel in the interannual difference sense at all levels of the atmosphere.  The spatial 

standard deviations of the difference of interannual mean differences are also smaller 
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than those of the monthly mean temperatures.  Spatial correlations of the interannual 

mean differences found in each data set are very high, especially in the stratosphere, 

where the spatial standard deviation of the interannual mean differences are considerably 

larger than in the troposphere. 

Figure C.16a shows the interannual monthly mean difference of surface skin temperature 

derived from AIRS soundings.  This field is constructed in a manner analogous to those 

shown in Figures C.14c and C.16c, except that over non-frozen ocean (referred to 

henceforth as “ocean”), only those cases passing the standard Sea Surface Temperature 

Test were used in generating the AM and PM monthly mean fields, while over land, sea-

ice, and coasts (referred to henceforth as “land”), all cases passing the Mid-Tropospheric 

Temperature Test were used.  To generate the monthly mean fields, monthly mean AM 

and PM fields were averaged together with equal weight, provided at least 5 observations 

during the course of the month were in each the AM and PM monthly mean fields.  In the 

event that this requirement is not met over land, those grid boxes are not included in 

either the monthly mean or interannual difference fields.  Over ocean, AM and PM 

monthly mean temperatures are weighted together equally unless no observations are 

included in one of the cases.  In this situation, the monthly mean value for the other time 

period is used.  If no observations are found for either time of day, that grid point is not 

included in the monthly mean or interannual difference fields (note the data void in the 

area of preferential stratus cloud cover near 20°S, 10°E). 

The spatial patterns of Figure C.16a show some similarity to those of Figure C.14c. Over 

ocean, the areas of warm anomaly for January 2004, mentioned above, also appear, 

though considerably weaker, in the surface skin temperature interannual difference field. 

The strong negative sea surface temperature differences near 30°S,130°W and 

30°S,10°W are not well reflected in the 500-mb temperature difference field however. 

Figure C.16b shows the interannual difference of colocated surface skin temperature as 

included in the ECMWF 3-hour forecast field.  The basic patterns in sea surface 

temperature interannual differences agree well, including the relative cooling of January 
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2004 compared to January 2003 at the equator between 120°W and 180°W.  ECMWF 

land temperatures are less reliable for use as “truth.” 

 
Figure C.16. Surface Skin Temperature 

Figures C.16c and C.16d show the difference of the AIRS and ECMWF interannual 

difference field.  Figure C.16c shows that agreement over ocean is much better than over 

land.  Figure C.16d shows the difference of the interannual difference fields only over 

ocean 50°N-50°S.  The color scale is twice as fine as previous scales, in that white 

represents ± 0.25K and every color is an additional 0.5K.  The spatial standard deviation 

is 0.51K and the correlation is 0.71.  Some of the largest differences occur south of 40°S, 

where ECMWF may be less accurate.  It is interesting to note that while the warming in 

January 2005 near 50°S described previously shows up in the ECMWF interannual 

difference field, it is weaker than that found in the AIRS field.  Significant negative 

differences are shown in Figure 3d near 45°N,50°W and 40°N,150°E that appear to be 

artifacts in the AIRS interannual difference field, as ECMWF should be accurate in these 

areas. 
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C.2.2 Constituent Profiles 

Version 4 of the AIRS Science Team algorithm generates vertical profiles of water vapor, 

ozone, and carbon monoxide in terms of layer column densities (mol/cm2) in 100 

atmospheric layers.  In generating monthly mean fields, the entire profile is accepted if 

the Constituent Test is passed.  CO monthly mean fields are not shown as we do not have 

another measure of this quantity to compare with. 

C.2.2.1 Water Vapor Profiles 

Water vapor fields are presented in terms of total integrated water vapor column density 

above the surface, as well as above different atmospheric pressures.  As with all derived 

products, water vapor profiles represent atmospheric water vapor in the clear portion of 

the partially cloudy scenes.  It does not include water vapor above, within, or below 

clouds in the scene.  Thus, there could be a sampling difference between derived water 

vapor fields and water vapor as predicted by forecast models, or as measured by 

microwave based observations, both of which would include water vapor in the cloudy 

portion of the scene. 

Figures C.17a and C.17b show monthly mean total precipitable above the surface (cm) 

derived from AIRS/AMSU observations for January 2004, and the difference of AIRS 

monthly mean total precipitable water contained in the collocated ECMWF 3 hour 

forecast fields.  The global mean AIRS total precipitable water for all cases passing the 

Constituent Test (roughly 85% of all observations) is 2.42 cm.  If tighter tests were used 

(see Susskind, et al., 2005), sampling would eliminate most of the cloudiest cases, and 

less water vapor would result.  We have tried to minimize a clear sky bias in monthly 

mean fields by including as many cases as possible.  In a global mean sense, AIRS is 

moister than ECMWF by 0.17 cm (7.0%) with a spatial standard deviation of 0.16 cm 

(7.4%). 
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Figure C.17. Total Precipitable Water (cm) 

 
Figures C.17c and C.17d show analogous results for the interannual difference of total 

precipitable  water  between  January  2004  and  January 2003.    Globally, AIRS shows 

0.02 cm of precipitable water more in January 2004 than January 2003, or roughly 1% of 

the global mean value of 2.42 cm.  This apparent “moistening” is probably within the 

noise of the measurement.  The spatial standard deviation of the difference is 0.34 cm and 

is almost 15% of the global mean.  Large spatially coherent differences exist, with 

considerable drying along the equatorial Pacific Ocean, and moistening in the tropical 

Atlantic and Indian Oceans and in the extratropical oceans.  These features are in general 

correlated with interannual sea surface temperature differences.  The relatively small 

negative sea surface temperature difference near the equator between 180°W and 120°W 

is accompanied by an extremely large drying in this and adjacent areas.   

Figure C.17d shows very good agreement with the ECMWF interannual difference of 

total precipitable water, with a spatial correlation of 0.94.  The global standard deviation 

of the interannual difference of total precipitable water between AIRS and ECMWF is 
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smaller than that of the monthly mean fields.  This also indicates the existence of regional 

biases that tend to cancel when interannual differences are taken.    

Figures C.18a-d show analogous results for total precipitable water vapor above 500 mb 

(mm*10).  ECMWF values of water vapor in the upper troposphere are essentially model 

driven and should be highly suspect.  AIRS has a dry global bias of 0.053 mm compared 

to ECMWF (roughly 5% of the global mean) and the spatial standard deviation of the 

difference is 0.117 mm (≈ 10%).  AIRS data indicates a drying of .015 mm above 500 mb 

(compared to a global mean of 0.996 mm) in January 2004, compared to January 2003 

corresponding to 1.5% of the total.  This result may be in the noise level of accuracy at 

this height of the atmosphere.  The spatial standard deviation of the interannual difference 

is 40% of the global total, indicating a considerable redistribution of upper tropospheric 

water vapor between the two Januaries.  The spatial pattern of interannual differences of 

upper tropospheric water vapor is similar to that of total precipitable water in some areas, 

but quite different in others.  Note, for example, the region 120°E–180°E, 20°N-20°S.  

AIRS and ECMWF interannual differences agree closely, with a correlation of 0.95.  

These statistics, as well as analogous statistics for precipitable water above 850 mb, 700 

mb, and 300 mb, are shown in Table C.2. 

Table C.2. Monthly Mean Precipitable Water 
January 2004                                                      January 2004 – January 2003 

 
                                     AIRS               AIRS-ECMWF                   AIRS                        AIRS-ECMWF  
Pressure mean STD mean STD mean STD mean STD corr 

mb          
   surf    24.18 15.88  1.75 1.83  0.21 3.44  0.01 1.19 0.94 
   850  11.94   8.39  0.95 1.17  0.05 2.51 -0.05 0.98 0.93 
   700      4.73   3.83  0.07 0.42 -0.08 1.45 -0.03 0.51 0.95 
   500    0.996   0.877 -0.053 0.117 -0.015 0.403 -0.014 0.132 0.95 
   300     0.0746  0.0551 -0.0074 0.0148 -0.0018 0.0239 -0.0037 0.0116 0.91 
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Figure C.18. Precipitable Water above 500 mb (mm*10) 

 
C.2.2.2 Total O3 Burden 

Because AIRS is an infrared sounder, ozone profiles are produced day and night, as well 

as in polar winter.  TOMS (Herman, et al., 1991) produces highly accurate measurements 

of total ozone, but operates only under sunlight conditions because it is an ultraviolet 

based instrument.  In generating AIRS monthly mean fields of total O3, all cases passing 

the Constituent Test were averaged, including both ascending (day) and descending 

(night) observations.  The monthly mean AIRS total ozone field for January 2004 is 

shown in Figure C.19a.  The monthly mean TOMS ozone field, shown in Figure C.19b, is 

the average of all TOMS daily fields, originally given on a 1.25° longitude by 1.0° 

latitude grid.  We generated the monthly mean TOMS total ozone field by averaging  

TOMS daily mean fields. The daily TOMS data was obtained from the website 

http://toms.gsfc.nasa.gov/ftpimage.html.   At least 10 days of observations were needed 

for a given grid point to generate the monthly mean field.  Figure C.19c shows the 

difference between the monthly mean AIRS and TOMS total ozone fields for January 



AIRS Level 2 Algorithm Theoretical Basis Document Version 4.0 
 

 227 

2004.  Care should be taken about differences near the TOMS terminator, at about 61°N, 

because of possible time of month sampling differences. 

 
Figure C.19. Monthly Mean Total O3 (DU) 

There is a reasonable agreement between monthly mean AIRS and TOMS total ozone 

fields.  The global mean difference is 3.44 DU (1.3% of the TOMS global mean) and the 

spatial standard deviation is 10.09 DU (3.7%).  It is important to note that AIRS produces 

reasonable values of total ozone north of the terminator, where no TOMS data exists.   It 

is clear that some large scale spatial systematic differences exist between the AIRS and 

TOMS fields.  The cause of this needs to be understood. 

Figures C.20 a-c show analogous results for the difference of monthly mean total ozone 

between January 2004 and January 2003.  Features of the interannual differences of total 

O3 are depicted well by AIRS.  The spatially coherent differences have cancelled out to 

some extent, though AIRS appears to show a spurious increase in global total ozone by 5 

DU.   Over extratropical oceans, spatial patterns of interannual differences in total ozone 
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are similar to, and in phase with, those of 70-mb temperature (not shown), which are in 

turn out of phase with those of 500-mb temperature and surface skin temperature. 

The spatial standard deviation of the difference of the interannual difference fields is 8.71 

DU, compared to 10.09 DU for the monthly mean fields.  It is encouraging to see a 

spatial correlation of 0.80 for the interannual difference fields where they both exist, and 

a spatially coherent interannual difference field at high latitudes where TOMS data does 

not exist.  We are examining the causes of the systematic differences between AIRS and 

TOMS and expect an improved O3 retrieval algorithm in the next version of the AIRS 

retrieval algorithm to become operational at the Goddard DAAC. 

 
Figure C.20. Monthly Mean Total O3 (DU), January 2004 minus January 2003 
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