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1. INTRODUCTION

The Advanced Microwave Scanning Radiometer on EOS (AMSR-E) is a multichannel passive
microwave instrument scheduled to be launched on the Earth Observing System (EOS) Aqua
satellite in December 2000.  The AMSR-E instrument was developed by the National Space
Development Agency (NASDA) of Japan, and is a modified form of the AMSR instrument that
will be launched on the Japanese Advanced Earth Observing Satellite-II (ADEOS-II) in 2001.

The two AMSR instruments will operate in polar, sun-synchronous orbits, with equator
crossings at 10:30 am and 1:30 pm for ADEOS-II and Aqua respectively.  The AMSR is a
successor in technology to the Scanning Multichannel Microwave Radiometer (SMMR) and
Special Sensor Microwave Imager (SSM/I) instruments, first launched in 1978 and 1987
respectively, and will provide observations of variables describing the Earth's atmosphere, ocean,
cryosphere, and land surface.  Over snow-free land, it will be possible to estimate three surface
variables from AMSR dataÑsurface soil moisture me, vegetation water content we, and land-
surface temperature Te.  Soil moisture is of primary importance in MTPE studies and is a standard
product of this investigation.  Surface temperature and vegetation water content are also important
MTPE requirements and are included as research products.

This document describes the algorithm and validation approach for the AMSR land products.
The products are applicable to surface energy and water balance studies, large-scale hydrologic
modeling, numerical weather prediction, climate modeling, and monitoring of floods, droughts,
and land-cover change.  These studies are part of the MTPE ÒSeasonal-to-Interannual Climate
Variability and PredictionÓ and ÒNatural HazardsÓ research objectives, and will contribute to the
ÒLand-Cover and Land-Use ChangeÓ and ÒLong-Term ClimateÓ research objectives (MTPE,
1996).

The algorithm for deriving me, Te, and we from AMSR data is based on a physical model of
microwave emission from a layered soil-vegetation-atmosphere medium.  The model is derived
from theory and experimental data, and is considered to be valid at frequencies up to ~10 GHz.
Soil emission is masked to a significant degree by vegetation at frequencies above ~10 GHz,  thus
the retrieval algorithm uses the two lowest frequencies of AMSR (6.9 and 10.7 GHz).  The higher
frequencies (18 and 37 GHz) are used for surface classification as a preliminary step in the
geophysical retrievals.  An iterative, least-squares-minimization method is employed in the retrieval
algorithm.  The retrieved variables represent area-averages over the 6.9-GHz footprints.  The
retrievals of me and Te also represent averages over the respective vertical sampling depths in the
soil/vegetation medium.  As the vegetation cover increases, the retrieval errors for me and we

increase.  For dense vegetation these variables cannot be retrieved.  The retrieval algorithm
identifies when the reliability threshhold has been exceeded.  Evaluation of the derived products
will be performed in conjunction with associated EOS interdisciplinary investigations and
international programs such as GEWEX.
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2. OVERVIEW AND BACKGROUND

Routine global measurement of soil moisture, leading to better understanding of large-scale
land-surface hydrologic processes, is a high priority for EOS.  Earth system modeling will benefit
from remotely sensed soil moisture information for assimilations and comparisons with weather
and climate and land surface hydrologic models, and for monitoring floods and droughts.

Measurements of land-surface temperature and vegetation cover are needed for surface-flux
process studies and climate and ecosystem modeling.  AMSR measurements of these variables will
complement similar measurements using optical and thermal infrared sensors on EOS (MODIS and
AIRS).  Although passive-microwave measurements have lower spatial resolution they are less
affected by aerosols and clouds, and are responsive to different dynamic ranges of vegetation
structure and biomass than optical and infrared measurements.  There is potential for improved
synergistic products of surface temperature and vegetation using combined microwave, infrared,
and optical data.  

Soil moisture (surface wetness), vegetation dynamics, and surface temperature are three of the
twenty-four measurements identified as high priorities by the MTPE program (MTPE, 1996).  The
AMSR land products generated by this investigation will address directly and uniquely these three
critical areas.

Several studies during the past few years have investigated the influence of soil moisture on the
atmospheric boundary layer (e.g. Brubaker and Entekhabi, 1996) and have provided insights into
the importance of soil moisture in controling the feedbacks between land surface and atmosphere
that influence climate (Shukla and Mintz, 1982; Delworth and Manabe, 1989).  Improved
characterizations of soil moisture, surface temperature, and vegetation cover in numerical weather
prediction models have been shown to provide significant improvement in forecast skills.  Figure 1
shows the large impact of wet versus dry initial soil moisture conditions on 30-day precipitation
forecasts using the European Centre for Medium-range Weather Forecasts (ECMWF) model
(Beljaars et al., 1996).  The lack of a global observational capability to provide information on the
temporal and spatial variability of the soil moisture, surface temperature, and vegetation cover is a
major impediment to progress in forecasting.  The AMSR land products can thus make an
important contribution to the suite of MTPE/EOS measurements.

The terminologies and parameterizations used in describing land surface states are not well
defined or consistently applied.  The term Ôsoil wetnessÕ is commonly used to describe the amount
of soil water computed from a land-surface model, i.e. a soil-vegetation-atmosphere (or ÔSVATÕ)
moisture- and heat-flux model with given atmospheric forcing.  However, soil wetness so defined
is often model dependentÑdifferent SVAT models can give different values of soil wetness while
having similar estimates of water and energy exchange.  Also the soil depth within which the soil
wetness is defined varies according to the model (Wei, 1995).  For surface temperature, the terms
Ôcanopy temperatureÕ, Ôskin temperatureÕ, Ôaerodynamic temperatureÕ, and Ôradiation temperatureÕ
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Figure 1: Precipitation averaged over an ensemble of three 30-day forecasts for July 1993 using the
ECMWF model.  (a) Moist initial soil moisture (field capacity).  (b) Dry initial soil
moisture (25% availability).  (c) Difference between moist and dry.  Contours are at 1, 2, 4,
and 8 mm day-1 with shading above 4 mm day-1.  (From Beljaars et al., 1996.)
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may be implied depending on the context, e.g. the SVAT model being used, the viewing direction
and wavelength of the sensor, or the 3-dimensional characteristics of the surface (Norman and
Becker, 1995).  Likewise, various parameters have been used to describe vegetation cover,
including ÔbiomassÕ, Ôleaf-area index (LAI)Õ, Ônormalized difference vegetation index (NDVI)Õ,
etc.  In this document we attempt to provide clear definitions of the AMSR-derived variables me,
Te, and we.  Coupled remote sensing and land surface modeling may ultimately provide the best
means for utilizing the remote sensing measurements.

2.1 EXPERIMENT OBJECTIVES

The principal objective is to provide global remotely-sensed land surface measurements for use
by the MTPE research and operational forecasting communities.  The key land-surface variables
that can be derived from AMSR are surface soil moisture me, land-surface temperature Te, and
vegetation water content we.  Soil moisture is the primary measurement objective of this
investigation.  Surface temperature and vegetation water content are estimated by the algorithm as
part of the soil moisture retrieval.  All three variables are high-priority measurements in their own
rights for climate and ecological modeling and monitoring purposes.  The main objectives can be
summarized as follows:

· Derive a self-consistent set of land surface variables me, Te, and we, with global coverage
(except for regions of open water, dense vegetation, frozen ground, snow cover, and
mountainous terrain) from AMSR data.  The variables will be estimated at a spatial resolution
of approximately 70 km (the spatial resolution of the lowest AMSR frequency).  Provide
accuracy estimates for the retrieved variables.

· Validate the accuracies of the derived products, and document the algorithms, caveats, and data
descriptions necessary for researchers to utilize the data quantitatively in scientific studies.

· Make the data products, algorithms, and metadata available through EOSDIS.

· Promote use of the derived products for: (a) improved understanding of macroscale land-
surface hydrologic processes; (b) validating and initializing climate and weather prediction
models; and (c) monitoring land surface change and climatic anomalies (including floods and
droughts).

2.2 HISTORICAL PERSPECTIVE

To date, rather limited attention has been paid to the use of spaceborne passive microwave data
for land sensing.  Previous microwave radiometers have been sub-optimal in terms of spatial
resolution and frequency range, particularly for soil moisture sensing.  The Scanning Multichannel
Microwave Radiometer (SMMR) launched on the Nimbus-7 satellite in 1978 had a spatial
resolution of ~140 km at its lowest frequency of 6.6 GHz.  The Special Sensor Microwave Imager
(SSM/I) launched in 1987 has a lowest frequency of 19.3 GHz, at which moderate amounts of
vegetation largely mask the soil moisture signal.  The SMMR and SSM/I were designed for ocean,
atmosphere, and cryosphere studies.  Low frequencies (~1 to 3 GHz) are preferable for soil
moisture sensing since attenuation through vegetation is less at longer wavelengths and the
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sensitivity to moisture in the top few centimeters of soil is greater.  The 6.6 and 10.7 GHz
channels of the SMMR (similar to the low-frequency AMSR channels) have been shown,
however, to be sensitive to surface soil moisture under low-vegetation conditions.  The improved
spatial resolution provided by AMSR (~70 km) is reasonably matched to the grid scales of the
global atmospheric general circulation models (~50-100 km).  Thus, AMSR will provide the first
opportunity to obtain quantitative soil moisture data for global hydrologic and climate studies.  The
comparative performance characteristics of the SMMR, SSM/I, and AMSR are shown in Table 1.

The potential of the 6.6 and 10.7 GHz channels of the SMMR for soil moisture estimation was
first investigated by Wang (1985) and Njoku and Patel (1986).  These studies were followed by
others (Owe et al., 1988; Choudhury and Golus, 1988; Kerr and Njoku, 1990; Owe et al., 1992;
and van de Griend and Owe, 1994).  The SMMR was also shown to be useful for monitoring
seasonal flooding (Sippel et al., 1994), and for vegetation monitoring (Choudhury et al., 1987;
Calvet et al., 1994).  McFarland et al. (1990), Calvet et al. (1994), and Njoku(1995a) showed that
SMMR and SSM/I data could be used to estimate surface temperature.  The effects of the
intervening atmosphere on land-surface measurements at 37 GHz were investigated by Choudhury
et al. (1992) and Kerr and Njoku (1993).  Ferraro et al. (1986), Neale et al. (1990) and others
have investigated surface type classifications obtainable using SMMR and SSM/I data.  These
investigations, and others, have indicated the potential of AMSR for land surface studies.

Soil Moisture and Flooding

Estimates of large-scale surface soil moisture for comparison with satellite observations can be
derived from precipitation and surface meteorological data coupled with models of surface energy
and water balance.  Such estimates are currently produced by numerical forecast models (e.g.
NCEP and ECMWF) using four-dimensional data assimilation (4DDA).  An earlier method was
the Antecedent Precipitation Index (API) which has been commonly used as a soil wetness index.

Table 1: Comparative operating characteristics of SMMR, SSM/I, and AMSR

Parameter SMMR
(Nimbus-7)

SSM/I
(DMSP)

AMSR
(EOS)

Frequencies (GHz) 6.6, 10.7, 18, 21,
37

19.3, 22.3, 37,
85.5

6.9, 10.7, 18.7,
23.8, 36.5, 89

Altitude (km) 955 860 705

Antenna size (m) 0.79 0.6 1.6

Incidence angle (deg) 50.3 53.1 55

Footprint size (km)
at ~7 GHz
at ~37 GHz

140
27

N/A
35

70
14

Swath width (km) 780 1400 1445

Launch date (1978ÑNo longer
operating)

(1987ÑSeries in
orbit)

2000
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Shown in Figure 2(a) are SMMR brightness temperatures TB at 6.6 GHz horizontal polarization
over two regions in Kansas and Texas plotted as a function of API for five years of data between
the months of May and August (Choudhury and Golus, 1988).  The relationship between API and
TB is evident.  The Texas region (Quadrant (1,3)) has less vegetation and hence the data show a
steeper slope (greater sensitivity to surface moisture).  

Owe and van de Griend (1990) used a land-surface model to estimate large-area soil moisture
from precipitation measurements in Botswana (Figure 2(b)).  Figure 2(c) shows their comparisons
of SMMR-derived surface emissivity at 6.6 GHz versus soil moisture in the top 10 cm, using
corrections for vegetation obtained from AVHRR Normalized Difference Vegetation Index (NDVI)
data (van de Griend and Owe, 1994).  The model-based surface soil moisture estimates rely on
sparsely-sampled precipitation data and may not represent well the moisture conditions in the top
centimeter of soil at the time of the satellite overpass.  Nevertheless, good correlations are obtained
between the spaceborne microwave observations and the surface soil moisture.

Surface Temperature

Microwave surface temperature retrievals were tested over the U.S. using linear regression
algorithms developed for SSM/I (McFarland et al., 1990).  Comparison data used were surface air-
temperatures obtained in the early morning hours close to the times of the satellite overpasses.
Accuracies of 2 to 2.5°C were obtained (Figure 3(a)) which were supported by results of
simulation studies (Njoku, 1995a) (Figure 3(b)).  Other studies over forested regions have been
reported by Calvet et al. (1994) and Pulliainen et al. (1997).

Surface Vegetation

Vegetation studies using spaceborne microwave radiometry have focused mainly on the use of a
qualitative index consisting of the difference DT between vertically and horizontally polarized
brightness temperatures at 37 GHz (Choudhury et al., 1987; Townshend et al., 1989).  This index
is simple to compute, and the higher spatial resolution at 37 GHz is advantageous.  Unfortunately,
the index is not directly related to a physical vegetation quantity.  Vegetation opacity on the other
hand is a parameter of the radiative transfer equation, and at 6Ð10 GHz is approximately linearly
related to the vegetation water content.  Thus, it is possible to make quantitative estimates in this
frequency range of the vegetation water content (which is related to the vegetation biomass).  It is
also advantageous to use the lower frequencies in order to cover a larger dynamic range of biomass
without saturation.

Heterogeneous Surfaces

The effects of mixed surface types within the sensor footprints must be taken into account due
to the heterogeneity of land surfaces.  Retrievals of surface parameters will represent nonlinear
averages of the component quantities making up the sceneÑexcept where vegetation is low, in
which case the averages will be approximately linear (Njoku et al., 1995b).  The effect of
nonlinearity is only significant, however, where vegetation and bare soil regions of large
emissivity contrast cover the footprint in comparable fractions.  The issue of how averaging affects
the usefulness of the estimates for hydrologic modeling is important, and depends on the
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parameterization schemes of the hydrologic models.  Much attention has been paid recently to this
aspect (e.g. Lhomme et al., 1994; Raupach and Finnigan, 1995).

Integration of Retrievals with Soil-Vegetation Modeling

A number of studies have considered approaches in which microwave radiances are assimilated
directly into predictive models of moisture and heat flow in soils and ecosystem functioning
(Entekhabi et al., 1994; LoSeen et al, 1995; Liou and England, 1996).  Microwave radiative
transfer models coupled with models of heat and moisture fluxes in soils can be used to retrieve
higher-level products such as subsurface moisture and temperature profile information and surface
heat fluxes.  Such products are exploratory and will be developed as research products.

2.3 INSTRUMENT CHARACTERISTICS

2.3.1 Instrument Description

The AMSR is a passive microwave instrument that measures brightness temperature at six
frequencies, 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz, with vertical and horizontal
polarizations at each frequency for a total of twelve channels.  The EOS AMSR is a modified
version of the AMSR developed for ADEOS-II, and consists of a 1.6-m-diameter offset parabolic
reflector fed by an array of six feedhorns.  The reflector and feedhorn array are mounted on a drum
which also contains the radiometers and mechanical and electronic subsystems.  The
reflector/feed/drum assembly rotates around the vertical axis using a coaxially-mounted bearing and
power-transfer assembly.  All data, commands, timing and telemetry signals, and power pass
through the assembly on slip-ring connectors.

A cold-sky reflector and a warm load are mounted on the transfer-assembly shaft and do not
rotate with the drum assembly.  They are positioned off-axis such that they pass between the
feedhorn array and the parabolic reflector once each scan.  The cold-sky reflector reflects sky
radiation into the feedhorn array.  This, and the warm load, serve as calibration references.
Corrections for antenna pattern spillover and cross-polarization effects are incorporated in the level
1 processing algorithms.

The AMSR rotates continuously at 40 rpm (i.e. with a period of 1.5 s).  At an altitude of 705
km it measures the upwelling scene brightness temperatures over an angular sector of ± 61° about
the sub-satellite track, resulting in a swath width of 1445 km.  During the period of 1.5 seconds
the spacecraft sub-satellite point travels 10 km.  Even though the instantaneous fields-of-view are
different for each channel, scene measurements are recorded at equal intervals of 10 km (5 km for
the 89 GHz channels) along the scan.  The half-cone offset angle of the reflector is 47.4° which

results in an Earth-incidence angle of 55°.  Table 2 lists the pertinent performance characteristics.

2.3.2 Instrument Calibration

The accuracy of the AMSR brightness temperature measurements includes the rms accuracy or
sensitivity DT and the absolute calibration accuracy.  The sensitivity per sample for each frequency
is shown in Table 2, and is a function of the receiver noise temperature, integration time, and
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bandwidth.  The radiometer calibration accuracy budget, exclusive of antenna pattern correction
effects, is comprised of three major contributions: a warm load reference error, a cold load
reference error, and radiometer nonlinearities and errors.  Accounting for all errors, the total
estimated sensor bias error, as provided by the instrument manufacturer, is 0.66 K at 100 K,
increasing slightly with temperature to 0.68 K at 250 K.

The major part of the warm-load reference error comes from the following four components:
(a) the accuracy of the platinum resistance thermistors (PRTs) as measured by the
manufacturerÑon of the order of ± 0.1 K; (b) the temperature gradient over the load area (the
SSM/I gradient reached values as high as ±0.4 K); (c) loadÐfeedhorn coupling errors due to the
design of the system; and (d) reflections out of the feedhorn due to receiver electronics.  An
estimate of the warm load reference error, taking the root-sum-squared of the aforementioned
components, is ±0.5 K.  The error in the cold reference measurement is caused mainly by the
residual error in coupling between the cold sky reflector and the feedhorn.  This is estimated to be
±0.5 K. Other factors affecting the cold reference error are the reflections out of the feedhorn due
to the receiver electronics, and the resistive losses of the cold sky reflector itself.  An estimate of
this error can be as high as ±0.62 K.

The main factor influencing radiometer nonlinearity is imperfect operation of the square law
detector.  This nonlinearity results in an error that can be estimated during the thermal-vacuum
calibration testing.  (On SSM/I this error was ±0.4 K.)  Another source of error in the receiver
electronics is the gain drift caused by instrument temperature variation over one orbit. This error
depends on the design of the receiver and the overall design of the sensor.  The drift can be as high
as ±0.24 K for a temperature variation of less than 10 °C over one orbit.

2.3.3 Data Products

The data products of this investigation are summarized in Table 3.  These output products will
be generated from the input level 2a data.  AMSR level 2a data (see the AMSR Level 2a ATBD) are
calibrated, co-registered, comensurate brightness temperatures, such that for given subsets of
channels, the brightness temperatures of all channels represent the same spatial regions on the
ground (the effective antenna patterns and sampling locations are the same).  The level 2a product
is used as our starting point since the retrieval algorithm assumes that at each retrieval point the

Table 2.  EOS AMSR Nominal Performance Characteristics
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Center Frequencies (GHz) 6.925 10.65 18.7 23.8 36.5 89.0
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Bandwidth (MHz) 350 100 200 400 1000 3000
Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1
IFOV (km) 76 x 44 49 x 28 28 x 16 31 x 18 14 x 8 6 x 4
Sampling Rate (km) 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 5 x 5
Integration Time (ms) 2.6 2.6 2.6 2.6 2.6 1.3
Main Beam Efficiency (%) 95.3 95.0 96.3 96.4 95.3 96.0
Beamwidth (degrees) 2.2 1.4 0.8 0.9 0.4 0.18
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
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multichannel brightness temperatures are characteristic of the same region of terrain (i.e. they have
the same footprint size and location).  The gridded brightness temperatures will be archived for use
in further research algorithm development.

Table 3: AMSR Land-Surface Products
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Product Parameter Estimated Spatial Grid Granularity

Type, Levely Accuracy Resolutionx Resolution 

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

S, 2 Surface soil moisture 0.06 g cm-3 z 60 km 25 km half-orbit
R, 2 Vegetation water content 0.15 kg m-2 z 60 km 25 km half-orbit
R, 2 Surface temperature 2.5 C 60 km 25 km half-orbit
S, 3 Brightness temperatures 0.3Ð0.6 K 11, 60 km 25 km 1 dayh

S, 3 Surface soil moisture 0.06 g cm-3 z 60 km 25 km 1 dayh

R, 3 Vegetation water content 0.15 kg m-2 z 60 km 25 km 1 dayh

R, 3 Surface temperature 2.5 C 60 km 25 km 1 dayh

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
y S = standard;  R = research;  2 = level 2;  3 = level 3
x Mean footprint size, see Table 2
  Nominal grid spacing
z For vegetation water content <1.5 kg m-2

h Ascending and descending separate

3. ALGORITHM DESCRIPTION

3.1 THEORETICAL DESCRIPTION

The retrieval algorithm for me, Te, and we uses a physically-based radiative transfer model.
The level of detail in the model is appropriate to the spatial scale of the AMSR footprints and the
uncertainty in knowledge of the physical processes involved.  Errors in physical modeling and
uncertainties in model parameters will propagate as retrieval errors in the inversions.  Modeling
surface roughness and vegetation scattering effects requires increasing complexity above ~10 GHz,
and the uncertainty is greater.  Hence, our baseline algorithm uses the two lowest AMSR
frequencies (6.9 and 10.7 GHz).  These frequencies also have better vegetation penetration and
soil moisture sensitivity though at the cost of decreased spatial resolution.  The 18 and 37 GHz
channels are used for surface classification as a preliminary step in the retrievals.

3.1.1 Physics of the Problem

The land surface is modeled as an absorbing vegetation layer above soil (Figure 4).  The
brightness temperature TBp observed at the top of the atmosphere at a given incidence angle and at

a given frequency can be expressed by the radiative transfer equation (e.g. Mo et al., 1982; Kerr
and Njoku, 1990) as:



14

Figure 4: Model Representation of a Spaceborne Radiometer Viewing A Heterogeneous Earth
Surface

TBp  =  Tu + exp (-ta) [ { Td rsp exp (-2tc) } +

 + { esp Ts exp (-tc) + Tc (1 - wp) [ 1 - exp (-tc) ] [ 1 + rsp exp (-tc) ] } ] (1)

where, Tu is the upwelling atmospheric emission, Td is the downwelling atmospheric and space-

background emission at the top of the vegetation, and ta is the atmospheric opacity.  The subscript

p denotes either vertical or horizontal polarization.  Tc is the vegetation temperature, tc is the
vegetation opacity, rsp is the soil reflectivity (related to the soil emissivity esp by  esp = 1 - rsp), and
Ts is the effective soil temperature (the effective temperature is the weighted-average temperature
over the microwave penetration depth in the medium).  The vegetation single scattering albedo is
given by wp.  The derivation of Equation (1) assumes a specular soil surface with no reflection at
the air-vegetation boundary.  This expression has been found to be a good approximation up to
~10 GHz for a vegetation layer overlying a rough soil surface provided rsp is interpreted as the

rough soil surface reflectivity.

A simplifying approximation is that the vegetation and underlying soil are at close to the same
physical temperature Te.  This approximation does not degrade the moisture retrieval accuracy, but
will result in the retrieval of a mean or ÔeffectiveÕ radiating temperature of the composite
soil/vegetation medium.  (It is difficult to retrieve Ts and Tc independently in any case except where
the vegetation and soil characteristics are well known a-priori.  Substituting Ts @ Tc = Te in
Equation (1) we obtain:

TBp  =  Tu + exp (-ta) [ { Td rsp exp (-2tc) } +

 + Te { (1 - rsp) exp (-tc) + (1 - wp) [ 1 - exp (-tc) ] [ 1 + rsp exp (-tc) ] } ] (2)
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The expression in the second curly brackets is the effective emissivity of the soil/vegetation
surface.

Atmosphere

Standard expressions for Tu and Td can be obtained from the literature (e.g. Hofer and Njoku,
1981).  At atmospheric window frequencies Tu and Td can be expressed using the effective
radiating temperature approximation as (ignoring the space contribution to Td:

Tu  @  Td  @  Tae [1 - exp (-ta)] (3)

where, Tae is the mean temperature of the microwave-emitting region of the atmosphere.  The
expression is valid for most atmospheric water vapor and cloud conditions.  Tae is frequency
dependent and depends also on the vertical distributions of temperature, humidity, and liquid
water.  Up to 37 GHz, however, the dependence of Tae on atmospheric profile variability is small,
and Tae may be expressed simply as a function of the surface air temperature Tas and a frequency-

dependent offset dTa:

Tae  @  Tas - dTa (4)

The effect of uncertainty in Tae on the observed TBp is actually sufficiently small that climatological

values suffice for Tas, dTa, and hence Tae.

The opacity ta along the atmospheric path is dependent on the viewing angle q and the
precipitable water qv and vertical-column cloud liquid water ql.  It can be expressed (for a plane
parallel atmosphere) as:

ta  =  (to + av qv + al ql ) / cosq (5)

where, to is the oxygen opacity at nadir, and av and al are frequency-dependent coefficients.
Values for these coefficients are derived from standard expressions for water vapor and droplet
absorption in the atmosphere (Rayleigh absorption is assumed for the cloud droplets).

Surface

The dependence of tc on vegetation columnar water content we follows an approximately linear
relationship which may be written as:

tc  =  b we / cosq (6)

where, cosq accounts for the slant path through the vegetation.  The coefficient b depends on
canopy structure and frequency.  Theory and experimental data suggest that for a given vegetation
type b is approximately proportional to frequency at frequencies below ~10 GHz (Jackson and
Schmugge, 1991; Wegmuller et al., 1995; LeVine and Karam, 1996).  These studies indicate,
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Figure 5: Dependence of vegetation opacity coefficient b on frequency for different
vegetation types (adapted from Jackson and Schmugge, 1991).

however, that at higher frequencies the frequency dependence of b decreases, and its dependence
on canopy structure increases.  This provides rationale for restricting the physically-based retrieval
algorithm to the use of 6.9 and 10.7 GHz.  Figure 5 shows experimentally derived values of b as a
function of frequency, for some specific vegetation types (from Jackson and Schmugge, 1991).

The reflectivity of rough soil, rsp, is related to that of smooth soil, rop, by the semi-empirical

formulation (Wang and Choudhury, 1981; Wang et al., 1983):

rsv  =  [ (1 - Q) rov + Q roh ] exp (-h) (7)

rsh  =  [ (1 - Q) roh + Q rov ] exp (-h) (8)

The form of the above expressions is suggested by scattering theory of randomly rough surfaces,
according to which the reflectivity rsp can be decomposed into coherent and incoherent parts

(Tsang and Newton, 1982).  The exponential term in the expressions is derived from the coherent
part, where h is related to the surface height standard deviation s.  The terms in brackets describe
mixing of the co- and cross-polarized scattered radiation, where the parameter Q is related to both h
and the horizontal correlation length l.  This formulation does not represent the detailed surface
roughness characteristics found in nature.  However, measurements at the AMSR footprint scale
will average over terrain of many types, which suggests that the averaged effect of roughness on
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microwave brightness can be represented adequately using the above formulation.  Values for the
parameters h and Q must be obtained empirically. Initial values will be used which will be fine-
tuned as part of the algorithm calibration procedure.  For a given location the roughness parameters
are not expected to exhibit significant temporal variability at the AMSR footrpint scale.

The Fresnel expressions relate the reflectivities rov and roh of a smooth, homogeneous soil to

the complex dielectric constant of the soil er:

rov  =   er cosq - er - sin2q

er cosq + er - sin2q
 

 2

(9)

roh  =   cosq - er - sin2q

cosq + er - sin2q
 

 2

(10)

where, q is the incidence angle relative to the surface normal.  For a given frequency, the dielectric
constant depends on the volumetric soil moisture content me and to a lesser extent on soil type.
(There is also a small dependence on soil temperature.)  This relationship can be expressed as:

er  =  f (me ; rb, s, c) (11)

To compute er the soil is considered as a mixture of soil particles and pore spaces filled with air and
water (Wang and Schmugge, 1980; Dobson et al., 1985).  The Dobson et al. model requires
specification of the sand and clay mass fractions s and c (which describe the soil texture) and the
soil bulk density rb.  Figure 6 illustrates the dependence of emissivity on soil moisture at 6.9 and
10.7 GHz for smooth soils, as derived from the dielectric model.  The high sensitivity of
brightness temperature to soil moisture (~3 K/% volumetric soil moisture for a soil temperature of
300 K) is the principal advantage of using microwave radiometry for soil moisture sensing.

Model Summary

Equations (2)Ð(11) summarize the dependence of observed brightness temperature on the land
surface and atmosphere geophysical variables.  The model equations can be represented as:

TBi  =  F i (x) (12)

where, the model function Fi (x) relates the brightness temperature observations TBi at channel i to
the parameters x = {xj} of the soil-vegetation-atmosphere medium.

The model parameters are listed in Table 4.  The parameters are grouped in two categories: (a)
parameters defining sensor and media characteristics that are constant or vary slowly with time,
and (b) media geophysical variables.  Atmospheric variables are included for completeness,
although the sensitivity of brightness temperature to these variables (over land) is too low for
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Figure 6: Dependence of emissivity on soil moisture for a smooth soil at 6
and 10 GHz, V and H polarization, and for sand (s) and clay (c)
type soils.

reliable retrievals.  (Retrieval of water vapor may be possible over surfaces with low emissivity
variability.)  In the retrieval algorithm, the atmospheric variables and media characteristics are
given fixed values derived from ancillary databases or climatology (Section 3.1.2).  The
parameterization represented by Table 4 is a reasonable compromise between complexity and
accuracy for the ~70-km-scale AMSR retrievals.

Effects of Inhomogeneity

The model described above does not consider nonuniform moisture and temperature profiles in
the soil, or heterogeneity of surface types and characteristics within a footprint.  The model is a
valid representation, however, provided the parameters me, Te, and we are considered as spatial
averages over the horizontal footprint and vertical sampling depth in the medium.

Vertically       Nonuniform Profiles

For nonuniform temperature and moisture profiles, the dependence of soil brightness
temperature Tbsp on the subsurface temperature profile Ts(z) and moisture profile m(z) can be

expressed as:

Tbsp  =  Ts (z)
-¥

0

 Fp{er (z)} dz (13)

where, z is the vertical dimension (positive in the upward direction), and er(z) is the complex
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dielectric constant profile which depends on m(z).  The form of Fp{er(z)} can be determined by
modeling the electromagnetic propagation in inhomogeneous media (Njoku and Kong, 1977).  An
approximate form for Fp{er(z)}, valid when the moisture profile does not vary rapidly over the
depth of a wavelength in the medium (the wavelength in the medium varies with dielectric constant
and hence also with depth), can be determined using an incoherent radiative transfer approach
which leads to expressions equivalent to (13):

Tbsp  =  (1 - rsp) Te (14)

Te  =  Ts (z)
-¥

0

 FNp{er (z)} dz (15)

Table 4: Parameters of the Microwave Model

Parameter Description

(a) Media & Sensor Parameters

Atmosphere:
to Oxygen nadir opacity
av, al Water vapor and liquid water opacity coefficients
dTa Lapse rate temperature differential (K)

Vegetation:
wp Single scattering albedo
b Opacity coefficient

Soil:
h, Q Roughness coefficients
rb Bulk density (g cm-3)
s, c Sand and clay mass fractions

Sensor:
q Viewing angle (deg)
n Frequency (GHz)
p Polarization

(b) Media Variables

Atmosphere:
qv Precipitable water (cm)
ql Cloud liquid water path (mm)
Tas Surface air temperature (K)

Land Surface:
me Surface soil moisture (g cm-3)
we Vegetation water content (kg m-2)
Te Surface temperature (K)
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where, rsp now denotes the reflectivity of a homogeneous soil of dielectric constant er(0), (i.e. er(z)

at z = 0), Te is the soil Ôeffective temperatureÕ, and FNp{er (z)} is an approximation of Fp{er(z)}

normalized to an integral of unity:

FNp{er (z)}  =  a (z) exp - a (z')
z

0

 dz'  (16)

a (z)  =  2 Im  2p
l

 er (z) - sin2q   (17)

Equations (14)Ð(17) show that, to first order, the reflectivity (and emissivity) is determined by the
dielectric constant (and hence the soil moisture) at the surface (z = 0), while the brightness
temperature is affected by the subsurface temperature and moisture profiles.  As the wavelength
increases, the approximation becomes less accurate since the emissivity is affected by the
subsurface dielectric constant gradient as well as the surface value.  The approximation is still
useful, however, provided that the emissivity is considered to be representative of the average
moisture me within a top soil layer of depth dm, the Ômoisture sensing depthÕ, where dm depends
on wavelength.  Simulations have shown (e.g. Wilheit, 1978) that dm is about a tenth of a
wavelength in the medium.  Thus, dm is a variable that is dependent on the surface soil moisture
content.  The longest AMSR wavelength is 4.3 cm, and for a dry soil the wavelength in the
medium is about half this value.  Thus, we find for AMSR that dm < 2 mm.  The AMSR soil
moisture retrieval is therefore a Ôskin surfaceÕ value.

Figure 7 shows the weighting functions FNp{er (z)} for two representative moisture profiles.

The bulk of the soil emission comes from the neighborhood around the maxima of the weighting
functions, which may occur significantly below the surface for some profiles.  For uniform soil
moisture (i.e. uniform dielectric constant), and nadir-viewing, FNp{er (z)} takes the simple form:

FNp{er (z)}  =  a exp az  (18)

a  =  4p n"
l

(19)

where n" is the imaginary part of the refractive index (square root of the dielectric constant), i.e.
n"  =  Im er .  The Ôtemperature sensing depthÕ dt = a-1 is defined as the depth of the surface
layer from which ~63% of the emitted radiation originates.  Alternatively, dt is the distance in the
medium over which the intensity of transmitted radiation decreases by a factor of e-1 = 0.368 (for a
medium of uniform temperature and moisture).  dt is also often referred to as the Ôpenetration
depthÕ in the medium.  Figure 8 shows the dependence of dt on frequency and soil moisture for a
sandy soil.

In summary, for inhomogeneous moisture and temperature profiles, me is interpreted as the
mean soil moisture over the depth dm, and Te is the mean soil temperature over the depth dt.
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Horizontal Heterogeneity:

For a heterogeneous scene (Figure 4), the parameters and terms of Equation (2) represent area-
averages within the observed footprint.  The horizontal footprint and area-weighting are defined by
the antenna pattern.

If we consider a simple representation, in which the antenna pattern is uniform within the
footprint area, and zero outside, then the observed brightness temperature Tb will be an area-
average of the component brightness temperatures Tbj within the footprint, i.e.

Tb   =  fj TbjS
j = 1

N

(20)

where, fj are the fractional coverages of N distinct surface types within the footprint (the fj sum to
unity).  A simplified analysis (Njoku et al., 1995b) shows that estimates of area-averaged
geophysical variables (surface temperature Te,vegetation water content we, and soil moisture me),
retrieved from the area-averaged brightnesses Tb, will be related to the component variables by the
following equations:

Te  =  1e  fj ej TejS
j = 1

N

(21)

we  =  - cosq
b

  ln  fj  exp [ -bwej / cosq ] S
j = 1

N

(22)

me  =  
 fj  mej  exp [ -bwej / cosq ]S

j= 1

N

exp [ -bwe / cosq ]
(23)

e  =  fj ejS
j = 1

N

(24)

The effects of nonlinearity caused by the presence of vegetation are evident.  We may define
ÔcompositeÕ parameters x' (where x may refer to Te, we, or me) as those obtained by a direct area-
averaging of the geophysical variables over the footprint, i.e.

x'  =  fjS
j = 1

N

  xj (25)

We can then examine the differences Dx = x - x ' between variables retrieved from area-averaged
brightnesses (Equations (21)Ð(23)) and those obtained by area-averaging the component variables
(Equation (25)).  Simulations of Dx have been carried out for a variety of two-component surfaces

(Njoku et al., 1995b).  Figure 9 shows the results for soil moisture Dme.  The effects of
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nonlinearity are small except in situations where roughly equal fractions of bare soil and dense
vegetation occur within the footprint.  Such cases must be considered carefully when interpreting
the AMSR land retrievals.

Model Calibration

Uncertainty in the absolute calibration of the AMSR brightness temperatures and in some of the
model parameters requires that the retrieval model first be ÔcalibratedÕ to the AMSR observations.
This will be done by selecting homogeneous sites, e.g. deserts and tropical forests, where offsets
in the brightness temperatures at the various channels can be determined, and the model parameters
h, Q, and wp can be fine-tuned.  Since the roughness characteristics of desert, and the single
scattering albedo of tropical forest, are not expected to change significantly with time, the
parameters h, Q, and wp are determined once, and then held constant in the temporal application of
the algorithm.  As AMSR data continue to be acquired over monthly and seasonal time scales, the
spatial (and any temporal) dependence of these parameters can be studied to improve the algorithm
performance.

Desert

Over the desert site, with an assumption of no vegetation (tc®0), the model equations can be
rearranged to express the soil reflectivity as a function of the observed brightness temperature,
surface temperature, and atmospheric absorption and emission:

rsp  =  
TBp - Tu - Te exp (-ta)

exp (-ta) { Td - Te + Tsky exp (-ta) }
(26)

Estimates of qv, Tae, and Te from forecast model output, and AMSR brightness temperatures, will
be used to evaluate rsh and rsv at desert sites (with cloud filtering if necessary) according to

Equation (26).  Values for h and Q will be obtained for each frequency.

Forest

Over the forest site, the high vegetation opacity masks the underlying soil.  Using the limit
tc®large, we can rearrange the model equations to express the vegetation single-scattering albedo
as a function of the observed brightness temperature, surface temperature, and atmospheric
absorption and emission:

wp  =  1  -  
( TBp - Tu )

Te exp (-ta)
(27)

Using forecast model output and AMSR data over the forest sites, as for the desert sites, values for
wp will obtained at each frequency and polarization.
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By matching the model to the AMSR observations at the calibration sites we lump any residual
brightness temperature calibration offsets into the derived values of h, Q, and wp.  It is difficult to
distinguish absolute radiometric calibration offsets from model offsets without more extensive
analysis.  This will be done on a continuing basis throughout the mission.

Sensitivities

The sensitivity Sij of brightness temperature at channel i to geophysical parameter xj can be
expressed as:

Sij  =    Xj   
¶F i

¶xj
 

 x = xo

  (28)

where, Xj are typical geophysical parameter dynamic ranges and xo are baseline values of the
parameters x at which the sensitivities are evaluated.  Normalizing the sensitivities by the ranges X j

indicates more clearly the relative magnitudes of the sensitivities to the different variables in
Kelvins.  Table 5 shows the computed sensitivities for horizontal and vertical polarizations at 6.9
GHz.  Two cases are shown, one for a baseline of bare soil and one for a baseline vegetation water
content of 1.5 kg m-2 (spanning the range of vegetation conditions under which we believe soil
moisture retrievals will be feasible).   The sensitivity to moisture and vegetation are clearly much
reduced at the higher vegetation level, although good sensitivity remains to surface temperature.
The sensitivity differences between H and V polarizations, and between frequencies (10.6 GHz not
shown), enable the four-channel retrieval algorithm to discriminate between the moisture,
vegetation, and temperature variables.  Sensitivities to other variable and model parameters are
typically an order of magnitude or so less than to the three main variables (soil moisture, surface
temperature, and vegetation water content), and hence are not dominant factors in the retrievals.

3.1.2 Mathematical Description of the Algorithm

Retrievals of land surface parameters have in the past used principally surface classification and
linear-regression methods (e.g. McFarland et al., 1990; Jackson and LeVine, 1996).  Nonlinear
algorithms (iterative and neural-network based) have also been studied (Zurk et al., 1992; Njoku et
al., 1994) particularly to improve retrievals where the physics of the radiative transfer and
interaction processes are nonlinear.  Bayesian estimation techniques have been investigated to
include, optimally, a-priori information on sensor noise, model uncertainties, probability
distributions of the parameters being estimated, and ancillary data from ground truth or other
sensors (Davis et al., 1995).  The baseline AMSR algorithm is a nonlinear, iterative algorithm, and
is a compromise from the viewpoints of physical basis, global applicability, and maturity.  As
discussed earlier, the retrievals will be performed at the 6.9 GHz footprint resolution since the 6.9
GHz frequency is essential to the soil moisture retrieval.  The effects of subpixel heterogeneity are
expected to be small except for special cases.  These effects will be studied in a research mode, but
retrievals at higher spatial resolution will not be part of the baseline algorithm.
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Baseline Algorithm

The algorithm retrieves simultaneously the three primary variables me, we, and Te, from
measurements at four channels (6.9 and 10.7 GHz, V and H polarization; i = 1 to 4).  The
algorithm is based on the radiative transfer model Fi (x) (Equation (12)).  The definitions of the
retrieved variables are:

· me : Surface soil moisture (g cm-3)Ñthe soil moisture in the top few millimeters of soil,
averaged over the retrieval footprint.

· we : Vegetation water content (kg m-2)Ñthe water content in the vertical column of
vegetation overlying the soil, averaged over the retrieval footprint.

· Te : Land-surface temperature (K)Ñthe microwave radiating temperature of the surface,
averaged over the retrieval footprint.

Table 5(a):  Normalized sensitivities at 6.6 GHz, H and V polarizations, and q = 50°, for given
parameter ranges Xj and baseline values xoj.  Vegetation baseline is we = 0 kg m-2 (bare
soil).

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Parameter Range Baseline Sensitivity, H Sensitivity, V

(Xj) (xoj) Sij (K) Sij (K)
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Soil moisture, me (g cm-3) 0.32 0.15 95.5 60.1

Surface temperature, Te (°C) 40 20 25.1 35.7

Vegetation water, we (kg m-2) 1.5 0 211.3 28.1

Precipitable water, qv (cm) 5 2.5 1.3 0.18

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Table 5(b):  As for Table 5(a), except vegetation baseline is we = 1.5 kg m-2.

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Parameter Range Baseline Sensitivity, H Sensitivity, V

(Xj) (xoj) Sij (K) Sij (K)
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Soil moisture, me (g cm-3) 0.32 0.15 8.5 5.3

Surface temperature, Te (°C) 40 20 22.0 20.6

Vegetation water, we (kg m-2) 1.5 1.5 10.9 1.2

Precipitable water, qv (cm) 5 2.5 0.12 0.02

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
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Figure 10: Land algorithm flowchart

The algorithm flowchart is shown in Figure 10.  The AMSR brightness temperatures (Tbs) are
first resampled (for a given swath) to an Earth-fixed grid.  The gridded Tbs are then classified to
determine feasible points for retrieval.  Gridding facilitates combination of the Tbs with ancillary
data for the classification and retrieval steps, and also allows statistics of Tbs and retrieved
parameters to be accumulated at fixed grid locations from successive orbits.  The loss in retrieval

accuracy caused by gridding the Tbs prior to geophysical retrieval is small compared to other
uncertainties.  The retrieved parameters are output as gridded level 2 products (no averaging over
multiple orbits is done).

Resampling to Earth Grid

The NSIDC EASE-Grid is considered as the baseline grid for the AMSR land retrievals.  The
EASE-Grid was developed by the National Snow and Ice Data Center (NSIDC) for gridding
SSM/I data products.  The version to be used is the global, cylindrical, equal-area projection, with
a nominal grid spacing of approximately 25 x 25 km (true at 30°N&S).  The size of the grid is
1383 columns x 586 rows.  A description of the EASE-Grid can be found at the NSIDC URL
http://www-nsidc.colorado.edu/NASA/GUIDE/EASE/.  Alternatively, a rectangular latitude-
longitude grid can be used, with a spacing of 0.25° x 0.25° and size of 1440 x 720.  However, this
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is not an equal-area grid.  The advantage of an equal-area grid is that the resampling statistics at
each grid point are characteristic of the same number of input data points.  The grid used is referred
to below as the AMSR land grid.  The swath brightness temperatures will be resampled to the
AMSR land grid using either a Ôdrop-in-the-bucketÕ or Ôdistance-weightingÕ method.  The drop-in-
the-bucket method is simplestÑall data samples that fall within a grid cell are averaged together.
However, the distance-weighting method may introduce less interpolation error.  

Ancillary Databases

Four types of databases will be used in the surface classification and retrievals.  The purpose of
the databases is to identify valid grid points for retrieval and to aid in the geophysical retrieval.  The
databases will be obtained from archived sources and pre-processed to the AMSR land grid.

Surface TopographyÑwill be derived from the U.S. Geological Survey EROS Data Center
GTOPO30 global digital elevation model.  The horizontal grid spacing is 30 arc seconds.  Pre-
processing of these data will enable screening out points over ocean, mountainous terrain, and
where the topographic variation within a grid cell is likely to degrade the geophysical retrievals.

Soil Texture (sand and clay fraction)Ñwill be derived from a 1°x1° lat-lon global soil type
database (Webb et al., 1992) for use in estimation of soil dielectric properties as a function of soil
moisture content.  Higher resolution databases are available for use in certain regions (e.g. U.S.).

Vegetation TypeÑwill be derived from the USGS EDC 1 km global land cover characteristics
database.  These data will be used in estimating the dependence on vegetation type of the model
coefficient b relating vegetation water content to vegetation opacity.

Atmospheric Parameters (precipitable water and surface air temperature)Ñwill be derived
from the NCEP or ECMWF global reanalysis datasets (climatology) or the real-time forecast model
outputs.  These data will be used for estimating atmospheric contributions in the geophysical
retrieval algorithm.

Surface Type Classification

The surface type classification is done to identify and screen (prior to retrieval) grid cells that
include major water bodies, mountainous regions, dense vegetation, snow, frozen ground, and
precipitation, for which retrievals will not be possible.  All other grid points are considered ÔvalidÕ
for retrieval.  The databases described above will be used to classify permanent features.  The
AMSR snow and precipitation algorithms (developed by other AMSR investigators) will be used to
classify variable snow cover and precipitation.

Retrieval

In the iterative procedure, the values of the geophysical parameters to be retrieved x = {me, we,

and Te} are adjusted to minimize the weighted-sum of squared differences c2 between observed,

TBi
obs, and computed, Fi (x), brightness temperatures.  The Levenberg-Marquardt algorithm is used

for the minimization (Press et al., 1989).  
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c 2  =  
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(29)

At each retrieval point, the algorithm starts with a-priori values of the geophysical variables x o

and adjusts these iteratively until convergence to the c2 minimum is achieved.  si represents the

measurement noise in channel i.  The model Fi (x) is mathematically well-behaved, hence
convergence is normally fast, except where the model cannot adequately represent the surface
emission (e.g. where snow or open water occur in the footprint), or where the sensitivity to the
parameters is too low.  This occurs, for example, in the retrieval of me and we in densely-vegetated

areas.  In such cases the retrievals are unreliable, as indicated by high values of the minimized c2.

The atmospheric variables of the modelÑqv, ql, Tas, and dTaÑare given a-priori values derived

from climatology.  The atmospheric parameters to, av, and aw, are known constants.  The

parameters b, h, Q, wp, rb, s, and c are given fixed values based on the model calibration and
ancillary data discussed in the previous section, and will be fine-tuned after launch to calibrate the
model using AMSR observations at designated calibration sites.

Enhanced Algorithms

Bayesian estimation will be investigated for implementing constraints on the retrievals in a
formal wayÑby incorporating a-priori statistics (joint probability distributions) of the surface and
atmospheric characteristics and the brightness temperatures themselves.  Information will be
obtained from ancillary databases and the time-history of AMSR brightness temperatures.  The a-
priori distribution covariances relative to the sensor and model mismatch covariances will be
adjusted in order to ensure stable and well-behaved retrievals.  The a-priori covariances will be
poorly known at the start of the AMSR mission.  However, as the database of global brightness
temperatures and retrievals is built up after launch the algorithm will ÔlearnÕ by multi-temporal
analysis and become more optimal in utilizing the improved a-priori knowledge.  Algorithms to
propagate the remotely sensed surface information to greater depths in the soil, e.g. using a heat-
and water-flux soil model, will also be investigated in collaboration with EOS IDS investigators,
following the approaches of Entekhabi et al (1994) and others.

3.1.3 Variance and Uncertainty Estimates

Estimates of the retrieval uncertainties of the baseline algorithm have been obtained by
simulation studies and by tests using Nimbus-7 SMMR data.  

Simulation Studies

In the simulation studies the variables to be estimated, x = {me, we, Te}, were simulated as
sets of uniform random variables spanning the dynamic ranges: me = 0.03 to 0.35 g cm-3;  we = 0
to 1.5 kg m-2; Te = 0 to 40 °C; and qv = 1 to 5 cm.  From these distributions, the brightness

temperatures TBi = Fi (x) were computed at six SMMR channels used in the retrieval (6.6, 10.7,

and 18 GHz; V and H polarizations).  (Six channels were used in the simulation study, but the 18
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GHz channels were found to provide little additional information.)  Gaussian random noise of 0.3
K (1s) was added to simulate the SMMR observations TBi

obs*.  The retrieval algorithm was applied
to the simulated observations, and parameter estimates x* were obtained.  The uncertainty
estimates in the retrieval procedure were then obtained from the means and standard deviations of
the errors  e = x* - x.

The results are shown in Figure 11.  Panels (a) through (d) show the soil moisture retrieval
error means and standard deviations as functions of me, we, Te, and qv respectively.  Similarly,
panels (e) through (h), (i) through (l), and (m) through (p) show the retrieval errors for vegetation
water content, surface temperature, and precipitable water.  The solid lines are the means, and the
dashed lines the standard deviations, of the errors.  In general, the mean errors are all close to zero
indicating that the retrievals are unbiased over the full ranges of variability.  The slight wiggliness
of the lines is the statistical uncertainty in the simulation of estimating the mean errors using nr =
200 realizations. The retrieval error standard deviations are not very sensitive to Te and qv, except

for eq which has a broad peak with a maximum near Te = 14 C.  Within the surface temperature
range corresponding to this peak, for the conditions of our simulation, the background surface
brightness temperature is similar to the tropospheric water vapor emitting temperature, and hence
there is little sensitivity of the satellite-observed brightness temperature to the water vapor.  This
points out the difficulty of retrieving water vapor (or cloud liquid water) over land, except where
the land brightness temperature is much lower, or higher than the tropospheric water vapor (or
cloud) emitting temperature.

A significant feature of Figure 11 is the increase in error standard deviations em and ew with
increase in vegetation water content (panels (b) and (f)).  This is expected, due to the masking of
the underlying soil and the saturation of vegetation emission at the higher vegetation amounts, at
frequencies of 6.6 GHz and above.  There is little potential for using the SMMR (or AMSR) for
retrieval of me or we at values of we > ~1.5 kg m-2.  At vegetation amounts below ~0.2 kg m-2

(approaching bare soil) the surface temperature retrieval error, eT, increases markedly (panel (j).
For bare soils, the algorithm has difficulty discriminating between the effects on brightness
temperature of increasing Te and decreasing me (note the corresponding increase in em in panel
(b)).  This implies that for bare soils the soil moisture retrievals may benefit from the use of
ancillary surface temperature data from other sources (satellite or in situ), if available with
sufficient accuracy.

Tests Using SMMR Data

The simulation results (Figure 11) indicate that, accounting for modeling errors (which we
have not simulated here), retrieval accuracies for me, we,and Te of better than 0.06 g cm-3, 0.1 kg
m-2, and 2.5 C, respectively, should be feasible using satellite instruments such as the SMMR and
AMSR over a wide range of conditions, provided the footprint-averaged vegetation water content
is less than about 1.5 kg m-2.  No externally provided data are assumed.  The model used in the
simulations does not account for surface heterogeneity, variability in surface topography and
roughness, or uncertainties in model parameters.  Thus, it is important to test the retrieval
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Figure 11: Simulated retrievals using Nimbus-7 SMMR characteristics (see text for details).
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algorithm using actual satellite data, under conditions in which the performance can be readily
assessed.  We have tested the algorithm using four years of Nimbus-7 SMMR data over a 4° x 10°
latitude-longitude region of the African Sahel, between 12° to 16°N, and 0° to 10°E.  In this region
there are strong seasonal signals of moisture, vegetation, and temperature, related to the rainy and
dry seasons.  The region is devoid of large-scale topography, and the surface can be viewed as
relatively homogeneous at the large scale of the SMMR footprints.  The region is a fragile
ecosystem, and hence is also of interest due to the threat of drought and desertification.

The SMMR data were derived from the reprocessed SMMR brightness temperature data set
available from the NSIDC DAAC.  The data were binned separately for daytime and nighttime
passes (ascending and descending orbits, respectively) onto 6-day and monthly 1/2° x 1/2° lat-lon
grids for ease of data handling and comparison with other data sets.  The retrieval algorithm was
applied to the monthly, daytime binned data; thus the geophysical parameter estimates are also at
the monthly 1/2° grid scale.  Daytime data were used since there are extensive gaps in the SMMR
nighttime data near the equator due to the alternate-day on-off operation of the sensor (the on-off
switching was done at the descending-node equator crossing near local midnight).

Figure 12(a) shows a time-series of the SMMR-derived geophysical parameters, retrieved on
the 1/2° grid, and further averaged over the Sahel study region.  Superimposed on the plot is the
precipitation rate, averaged over the same region, obtained from an operational forecast model
product of the National Centers for Environmental Prediction (NCEP).  Figure 12(b) shows
comparisons between the SMMR retrievals of me and Te and the NCEP model outputs of soil
wetness and surface temperature.  The variables in Figure 12 have been scaled as indicated, to have
similar dynamic ranges on the plots.  The NCEP model output products are part of a 13-year
(1982-94) operational forecast model reanalysis project.  The products are generated as outputs of
a 6-hourly data-assimilation and forecast cycle, and the products shown here were obtained from
NCEP as monthly-averages on a 2.5° x 2.5° grid, and then averaged over the study area.  The
model output data cannot be considered as ÔtruthÕ but they represent self-consistency in the forecast
model as related to the in-situ data used in the most recent (6-hourly) data assimilation.  Thus, the
data are valuable for comparing against the temporal trends of the SMMR retrievals.

Figure 12(b) demonstrates the ability to retrieve soil moisture and temperature from the SMMR
with the correct seasonal cycle.  It is difficult to compare quantitatively the absolute values of the
SMMR retrievals and the NCEP data, since the NCEP soil wetness represents an average value
over the top 10 cm, as compared to the top few mm for the SMMR.  Thus, the SMMR derived
values of soil moisture are more than a factor of four lower than the NCEP values.  Also, the
NCEP surface temperature is a skin surface value, as compared to the top few cm for the SMMR.
In addition, the SMMR data are samples near 12 noon local time, while the NCEP data are
averages over the diurnal cycle.  It is interesting to note the dip in the SMMR-retrieved surface
temperatures (Figure 12(a)) that appear to coincide with the peaks of the NCEP rain estimates.
These dips are less pronounced in the NCEP temperatures (Figure 12(b)), but are visible as
plateaus on the decreasing side of the curves.  Normally, under moist conditions the soil
temperature is cooler than for a dry soil, due to the increased evaporation from the soil and the soil
thermal inertia.  This cooling effect is more pronounced in the SMMR data sampled near local noon
than for the diurnally-averaged NCEP data.
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Figure 12: Monthly time-series of geophysical parameters retrieved from Nimbus
SMMR data in the Sahelian zone, and comparisons with model output data
from the NCEP reanalysis (see text for discussion).
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Figure 13: Scatterplots of SMMR-derived versus NCEP reanalysis variables shown in Figure 12.

Figure 13 shows scatterplots of the SMMR-derived and NCEP model output variables shown
in Figure 12(b).  The best fit regression lines are also shown.  The standard deviation of the
temperature comparisons in Figure 13(b) is 2.7 C.  Different quantities are being compared
between the remotely-sensed and model output data, and the data represent monthly averages, over
a relatively large 4° x 10° area.  Nevertheless, the level of agreement is good.  Better agreement is
to be expected when the comparisons can be carried out at shorter time scales, such that the
moisture and temperature variations can be tracked more accurately, and where the accuracy of the
comparison data can be better verified. The Sahel is a region where the accuracy of the operational
forecast models is suspect, due to the sparseness of in situ meteorological data for initializing the
forecasts.

3.2 PRACTICAL CONSIDERATIONS

3.2.1 Numerical Computation Considerations

The baseline algorithm has been tested using Nimbus-7 SMMR data with similar channels to
AMSR, i.e. 6.6 and 10.7 GHz, V and H polarizations.  The main computational burden is the
iterative retrieval at each grid point which requires computing the forward model at each iteration.
This can be speeded up by using approximations to the radiative transfer equations.  Since the
overall AMSR data rate is relatively low compared with other EOS sensors, the AMSR land
algorithm is not expected to be a major driver for the EOSDIS processing system.  There are no
special-purpose hardware or software requirements.

3.2.2 Programming/Procedural Considerations

To determine ÔvalidÕ points for the land retrievals the algorithm uses static ancillary databases
and simple threshholding classification of the brightness temperatures.  Information from the
AMSR snow cover and precipitation over land algorithms (see the individual ATBDs for these
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algorithms) may be used also.  The combined size of the ancillary databases is estimated as
approximately 20 Mbytes.  MODIS data will be used on an experimental basis (research mode) to
examine sub-pixel heterogeneity effects.  Further discussion of these items and the algorithm
flowchart is given in Section 3.1.2.  Algorithms will be written in FORTRAN-77 with portability
to run on UNIX-based platforms.  Data products will be structured and formatted according to
EOSDIS guidelines.  Coordination will be maintained with the appropriate EOSDIS DAAC in
providing documentation, algorithms, and data appropriate for archival and public distribution.

3.2.3 Calibration and Validation

Validation can be performed either directly on parameters derived from AMSR observations or
in conjunction with data assimilation methods and integrated hydrometeorological models.
Validation should include intercomparisons of similar data products developed by different
instruments and models.  Validation will be performed in collaboration with end users of the
AMSR land products (investigators of hydrologic process studies, climate monitoring, and data
assimilation) to ensure that the uncertainties and associated statistics meet their requirements.

Model Calibration

Model calibration has been discussed in Section 3.1.1.  The procedure involves estimating the
radiometric calibration offsets and fine-tuning the parameterization of the microwave model.  It will
be performed initially during the 2-month period immediately after launch, making use of globally-
distributed calibration regions, reasonably homogeneous over the footprint scale, that can be
characterized by a small number of parameters.  These regions include deserts, savannas,
grasslands, and dry and humid forest regions.  Surface truth data, including surface air-
temperature, humidity, precipitation, surface moisture, and biomass from measurement programs
at many of these sites, will be used.  Model parameter values of single scattering albedo over
forests, and surface roughness coefficients over deserts, will be verified in this manner.  The
algorithm calibration analysis will be performed at intervals during the mission to fine-tune the
calibration if necessary.  Figure 14 shows the locations of candidate calibration sites, and Table 6
lists their attributes.

Validation Issues

Validation of the AMSR land products will begin after the initial algorithm calibration period.
The objective of the validation will be to esimate the actual (as opposed to simulated) errors and
their space-time variabilities.  Validation will thus be a continuing process throughout the lifetime
of the AMSR mission.  The following are expected to be the major sources of uncertainty in the
output products:

· Footprints may contain mixtures of different surface types, hence the retrievals represent area-
averaged parameters over the ~70-km footprints.  In cases where there are large contrasts
(heterogeneity) within the footprint the retrieved quantities may not represent accurate area-
averages due to nonlinearities in the radiative transfer processes.  (It is assumed that area-
averages are appropriate for hydrologic and climate models.)
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Figure 14
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Table 6: AMSR Land Algorithm Calibration Analysis Sites

# Ecosystem Name Region Lat-Lon Attributes

1 Desert Simpson
Desert

Central
Australia

23.5-25.5 S
136-138 E

Low Relief,
S. Hemisphere

2 Desert Kalahari
Desert

S.W. Botswana 23-26 S
20-23 E

Low Relief,
S. Hemisphere

3 Desert Western
Desert

W. Egypt 25-28 N
25-28 E

Low Relief,
N. Hemisphere

4 Desert Sebkha
Mekerrhane

S. Central
Algeria

25-28 N
1-4 W

Moderate Relief,
N. Hemisphere

5 Desert Tibesti
Mountains

N.W Chad 19-22 N
17-20 E

High Relief,
N. Hemisphere

6 Sahel Bilma E. Niger 17-20 N
12-15 E

Northern Sahel

7 Sahel Tahoua S.W. Niger 13-15 N
4-6 E

Central Sahel

8 Sahel Kayes Mali/Senegal 14-16 N
11-13 W

Western Sahel

9 Tropical
Forest

Boumba S.E. Cameroon 2-5 N
13-16 E

Africa,
N. Hemisphere

10 Tropical
Forest

Salonga Central Zaire 0-3 S
20-23 E

Africa,
S. Hemisphere

11 Tropical
Forest

Mitu Colombia/
Brazil

0-3 N
68-71 W

S. America
N. Hemisphere

12 Tropical
Forest

Curua Central Brazil 7-10 S
53-56 W

S. America,
S. Hemisphere

13 Boreal
Forest

Boreas SSA Saskatchewan,
Canada

53.5-54.5 N
103.5-104.5 W

Southern BOREAS
Experiment Site

14 Boreal
Forest

Boreas NSA Manitoba,
Canada

55.5-56.5 N
97.5-98.5 W

Northern BOREAS
Experoment Site

15 Boreal
Forest

Bonanza
Creek

Central
Alaska, U.S.

64-65 N
147.5-148.5 W

Ecological Forest
Experimental Site

16 Tundra Toolic Lake N. Central
Alaska, U.S.

68-69 N
149-150 W

LTER Site

17 Salt Lake
Basin

Great Salt
Lake

N.W. Utah,
U.S.

38-44 N
111-117 W

Desert Hydrologic
Basin

18 Plains
Grassland

Southern
Great Plains

Oklahoma/
Kansas, U.S.

34-38 N
96-99 W

Subhumid
Hydrologic Basin
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· The retrieved variables represent averages over the microwave vertical sampling depth in the
medium.  This depth varies according to the amount of moisture in the soil and/or vegetation.
The different sampling depths at 6.9 and 10.6 GHz may give rise to some ambiguity in the
retrievals where the moisture and temperature profiles are highly nonuniform.

· The retrieval errors for me and we will increase with vegetation cover.  The vegetation
threshholds for reliability of the retrievals can only roughly be estimated at this time.
Additional pre-launch simulations and experience with AMSR data during the validation phase
may help establish these threshholds more precisely.

· Uncertainties associated with radiative transfer model parameters (such as soil roughness,
vegetation scattering and opacity coefficients, soil texture, etc.) will propagate into the retrieval
uncertainties for me, we, and Te.

A major validation challenge is the large AMSR footprint scale (~70 km).  Considerable
resources (beyond the capability of a single investigation) are required to mount an in situ
measurement campaign that can adequately characterize spatial fields of soil moisture,
temperature, and biomass at such scales within the time frame of a satellite overpass.  Reasonable
estimates of spatial fields can be obtained, however, by assimilation of distributed in situ point
measurements into hydrologic models, and by comparison with remotely sensed data from other
satellite instruments.  The AMSR land validation activities will therefore be performed in
collaboration with other modeling efforts and field programs, augmenting these where feasible for
this investigation.  The following issues are pertinent:

· A small number of test sites are needed to characterize the spatial variability of soil moisture,
surface temperature and vegetation over the AMSR footprint scale during short-term intensive
field measurement and modeling campaigns.  Two or more sites in different climate regimes are
desirable.  Validation at these sites will be referred to as ÔType 1Õ validation.

· Other sites are needed, less intensively sampled, that can provide a continuous source of
measurements from operational in situ networks.  Assimilation of these data into land surface
models will provide validation fields of lower spatial resolution but over larger regions and
continuous in time.  Validation against these fields will be referred to as ÔType 2Õ validation.

· For both types of validation, model output data are needed such as from the International
Global Soil Wetness Project, the operational forecast centers (NCEP and ECMWF), the
NASA/GSFC Data Assimilation Office, or other specialized modeling efforts that can
participate in this study.

· Sources of in situ data to be used in the validations will include:

- Established observation programs, including the Oklahoma Mesonet, DOE Atmospheric
Radiation Measurement (ARM) Program, NSF Long-Term Ecological Research (LTER)
sites, and the WCRP Baseline Surface Radiation Network (BSRN)
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- In-situ measurements from the former Soviet Union, China, and State of Illinois

- Field experiments carried out under the WCRP and IGBP.  These include GEWEX
Regional Continental Scale Experiments: GCIP (in the U.S. Mississippi Basin), GAME
(in the Asian Monsoon regions), and LBA (in the Amazon Basin).

- Surface-based observations obtained by EOS interdisciplinary and other instrument
investigations

Validation Sites and Methodology

Soil moisture is the primary AMSR-derived parameter to be validated in the Type 1 validation
experiments.  Soil moisture and surface temperature will be validated against the model
assimilation outputs in the Type 2 validations.  Vegetation water content will be validated primarily
by comparisons with products from other remote sensors, such as Leaf Area Index from MODIS.
The use of other remotely sensed data at higher spatial resolution than AMSR, e.g SAR, MODIS,
AIRS, will provide additional comparative validation for the AMSR soil moisture and temperature
retrievals, and will assist in determining the effects of spatial heterogeneity within the AMSR
footprint.

The principal Type 1 field validation site will be in the U.S. Southern Great Plains (SGP)
centered in Oklahoma (Figure 15).  This site covers a region of approximately 500 x 300 km, and
is perhaps the best instrumented site for surface soil moisture, hydrology, and meteorology in the
world.  The region has major East-West precipitation gradients which result in a large range of
seasonal soil moisture.  The vegetation cover also has a significant range.  The region includes
several major observation networks and research field sites (Oklahoma Mesonet, ARM-CART,
ARS Micronet), and is part of the GEWEX-GCIP focus study area.  The site was the location of
the SGPÕ97 experiment in July 1997, in which a comprehensive set of soil moisture, surface
characteristics, and boundary-layer flux measurements were acquired (organized as part of an EOS
interdisciplinary investigation - T. Jackson, PI), using a variety of in situ and remote sensing
instruments.  Table 7 provides a list of potential data sources for generation of future validation
data sets for this region.

Three AMSR-dedicated SGP field experiments are planned in 1999, 2001, and perhaps 2003
as follow-ons to the SGPÕ97 experiment, assuming Aqua and ADEOS-II launches in December
2000 and November 2001, respectively.  The first experiment will provide a database for AMSR
algorithm fine-tuning and as a reference for assessing interannual change with the preceding and
subsequent experiments.  The second and third experiments will provide data for post-launch
validation of the AMSR land products from Aqua and ADEOS-II.  Soil moisture validation
products will be created from the field experiment data, containing fused multi-sensor
observations.  Observations at different spatial and temporal scales will be merged to form
statistically optimal estimates of the validation data set state variables (soil moisture and soil
temperature in the 0 to -5 cm and -5 to -15, and -15 to -25 cm depths, and vegetation leaf area
index and dry and moist weight; both on 3 km x 3 km gridding).  Weights based on the error
structure of different sources of observations will be used to form a single estimate of the state
variables.  This is an ambitious strategy and will rely on resources and funding support from
cooperative programs and projects.
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Figure 15: The principal Type 1 field validation site in the U.S. Southern Great Plains (SGP)
centered in Oklahoma.  (Figure provided by T. Jackson, USDA/ARS Hydrology Lab, Beltsville, MD.)

The 1999 SGP experiment (SGP99) has been carried out as planned in July 1999.  The experiment
was conducted successfully using several airborne radiometers and extensive ground-based
instrumentation and soil moisture, temperature, and vegetation sampling.  A complete description
of the experiment plan and data are provided at the SGP99 web site
http://hydrolab.arsusda.gov/sgp99/  .  Other Type 1 validation sites are presently under
consideration that will take advantage of cooperative experiments with international programs
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Table 7: Characteristics and sources of observations for soil moisture validation data set development
at the SGP field site.

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Physical Spatial Temporal
Parameter Resolution Frequency Source
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Surface air One Station 15 Minutes Oklahoma Mesonet
Micrometeorology per 103 km2

Soil Temperature One Station 15 Minutes Oklahoma Mesonet
per 103 km2

Soil Matric Head One Station 15 Minutes Oklahoma Mesonet
per 103 km2 Capaticance Probes

Area-Average 4 km x 4 km Hourly NWS ABRFC
Precipitation

Volumetric Soil Variable Episodic NWS NOHRSC
Moisture along Flight Aircraft Instrument

Lines (Gamma-Radiation)

Vegetation 10 km x 10 km Daily Vis/IR Polar-
Parameters 30 km x 30 km Weekly Orbiting (MODIS) &

VIS/IR Geostationary
(GOES-8) satellites

Volumetric 30 km x 30 km 12 Hourly NCEP NWP
Soil Moisture Initialization

Soil Temperature 30 km x 30 km 12 Hourly NCEP NWP
Initialization

Near Surface 30 km x 30 km 12 Hourly NCEP NWP
Air Parameters Initialization

Volumetric Point Episodic Gravimetric
Soil Moisture Measurements

Volumetric 0.5 km x 0.5 km Episodic Aicraft remote sensing
Soil Moisture
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

including the Japanese ADEOS-II project, EOS instrument teams (AIRS and MODIS), and EOS
interdisciplinary investigations.
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Figure 16: Location of the GEWEX Regional Continental-Scale Experiments.  GCIP, GAME, and
LBA will be the main sites of interest for AMSR validation.

Type 2 validation sites will involve primarily the GEWEX Regional Continental Scale
Experiments (RCEs) including GCIP, GAME, and LBA (Figure 16).  The RCEs deploy long-term
hydrometeorological monitoring networks that will provide distributed surface observations
spanning a continuous period through the AMSR mission.  Special field experiments as well as
continuing four-dimensional data assimilation (4DDA) and macroscale hydrological modeling will
be conducted under these programs.  Participation and data sharing arrangements will be negotiated
with these programs.  For example,  GCIP is currently providing a 5-year documentation of
aspects of hydrologic-atmosphere coupling across the U.S., and will leave in place an ongoing
observational framework against which soil moisture comparisons can be made.  These data
include distributed fields of rainfall from gauges and NEXRAD rain-radar systems, runoff,
modeled evaporation, analyzed fields of temperature and humidity, and, at certain locations, arrays
of sensors to provide direct measurements of soil moisture.  Augmentation of these arrays is being
planned within a 200x200 km study area in Oklahoma and Kansas as part of the Atmospheric
Radiation Measurement (ARM) Project, and could be extended elsewhere in the Mississippi River
basin.  These arrays will be valuable as direct sources of comparison data for AMSR over selected
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regions of the U.S., but can serve also to validate model-based soil moisture estimates for the U.S.
as a whole, which will then be compared with AMSR soil moisture fields.

Global Scale Validation

Validation on a global scale is difficult since the only independent sources are products derived
from global atmospheric models, calculated using the soil hydrology from the budgets of energy
and water at the Earth's surface.  Key parameters, such as precipitation and the surface net
radiation, depend on the parameterizations used within the models, and their errors are often hard
to assess.  Forecast centers routinely perform data assimilation experiments with and without
specific satellite products.  From these, the regional and global output error fields of critical near-
surface parameters can be examined regionally and globally, such as the 2-m temperature and
humidity that are measured in-situ, and are closely linked to soil moisture initialization.  The
forecast errors resulting from using different soil moisture initializations (model or satellite derived
for example) will be examined to assess the impact on the forecast accuracy of the satellite derived
soil moisture in comparison with the purely model derived product.   These studies will be pursued
in collaboration with the GSFC Data Assimilation Office, and the operational forecast centers
(NCEP and ECMWF), and will rely on their support to perform the assimilation studies.

Joint Aqua-ADEOS-II AMSR Validation Plans

Plans are being made to use validation sites in the Asian region, principally Mongolia and
Tibet, that are being considered as primary validation sites for soil moisture products to be derived
from the ADEOS-II AMSR.  Cooperative plans are being developed by the Aqua and ADEOS-II
soil moisture investigstors to jointly utilize the Asian and U.S. SGP sites for validation through
shared instrumentation and data exchange.

3.2.4 Quality Control and Diagnostics

Outputs of the retrieval algorithm include two diagnostic parameters:  N Ð the number of
iterations required to reach convergence; and c2 Ð the minimum value of chi-squared achieved.

Large values of either N or c2 are indicators of non-convergence or large errors in the retrievals.

Global fields of the retrieved variables me, we, and Te will be created by averaging the output
level 2 products onto 10-day and/or monthly grids.  The number of samples n, means xm, and
standard deviations sd, will be computed for each grid point for each variable.  The mean fields will
be examined for spatial and temporal coherence, the number fields will be examined for missing
data, and the standard deviation fields will allow anomalous retrievals to be identified. Tools for
routinely scanning and summarizing statistics of these fields will be used.

3.2.5 Exception Handling

The main causes for nonconvergence or errors of the algorithm will be footprints containing
residual open water, snow cover, or precipitation.  Anomalous inputs due to bad radiometric data
(spurious noise, radio-frequency interference, calibration errors, etc.), bad locations, and other
lower-level processing errors will be identified.  Checks will be made in the processing algorithms
to identify remaining anomalies and to assign appropriate flags.
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4. CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS

The retrieval of the specified land products will be limited by the assumptions made in the
model, and by the physics of the problem.  The following are the major limitations of the output
products:

· Footprints may contain mixtures of different surface types, e.g. bare soil, vegetation, rivers.
Thus, the retrievals of footprint-averaged soil moisture, temperature, and vegetation, must be
interpreted with this in mind.  The retrievals nominally represent ~ 70-km area-averages.  In
cases where there is large contrast (heterogeneity) within a footprint, the retrieved quantities
may not accurately represent area-averages due to nonlinearity in the radiative transfer
processes.  (It is assumed that area-averages are the desired output for large-scale hydrology,
climate, and ecological models).  This is not expected to be a significant issue based on prior
simulations.

· The retrieved variables represent averages over a vertical sampling depth in the medium that is
intermediate between the sampling depths at the two frequencies, 6.9 and 10.6 GHz.  These
depths vary with the amount of moisture in the soil and/or vegetation.  The different sampling
depths at 6.9 and 10.6 GHz may give rise to some error in the retrievals where the moisture
and temperature profiles are highly nonuniform, since each retrieved variable is defined at a
single sampling depth.

· As the vegetation cover increases the retrieval errors for me and we also increase, until at large
values of we the retrievals become completely unreliable.  The vegetation threshholds for
reliability of the retrievals are only roughly-defined at this time.  Additional simulations prior to
launch, and experience with real AMSR data during the post-launch validation phase, will
establish these threshholds more precisely.

· Effects of topography, snow cover, clouds, and precipitation, are not explicitly modeled in the
retrieval algorithm.  Hence, these effects will manifest themselves as errors in the retrievals (if
not fully screened out).  Topographic effects will not change with time, and may be accounted
for in enhanced versions of the baseline algorithm.
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