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1. Overview and Background Information 

1.1 Introduction 
Due to diffraction, radiometers of differing frequencies using a common antenna do 

not generally produce equivalent gain patterns on the Earth surface.  Consequently, direct 
comparison of such observations is complicated by the fact that the measurements do not 
describe identical locations.  The Level 2A algorithm will alleviate this problem by 
producing several spatially consistent data sets, corresponding to the footprint sizes of the 
6.9, 10.7, 18.7, 36.5, and 89 GHz observations.  These five sets of antenna patterns are 
subsequently referred to as resolutions 1 though 5 of the Level 2A data set, corresponding 
to footprint sizes of approximately 58, 37, 21, 11, and 5 km respectively.  Observations 
will be produced at spatial intervals of approximately 10 km for the next four lowest 
resolution data sets, and 5 km for the highest resolution set.   

Throughout the remainder of this document, brightness temperature measurements 
derived directly from the Level 1A stage of processing will be referred to as �actual 
observations.�  Those brightness temperatures that are the result of a linear combination 
of actual observations will be identified as �constructed observations,� or �effective 
observations.�  The gain patterns of the effective observations closely match actual 
antenna gain patterns while reducing the effect of measurement noise through averaging.  
For each Level 2A observation within a single scan of the instrument, a set of coefficients 
describes the relative weights of the neighboring actual observations that are combined to 
produce the effective observation.  These sets of coefficients are unique for every position 
along the instrument scan, but do not vary from scan to scan.  

1.2 Algorithm Description 
The technique used to produce the weighting coefficients is known as the Backus-

Gilbert method.  This technique, originally developed in the context of inversion of 
seismic signals propagated through the Earth, approximates a given function as a linear 
superposition of other functions.  One of the most significant obstacles to implementation 
of the Backus-Gilbert method is that calculation of weighting coefficients requires 
calculation and inversion of large matrices, and is consequently time consuming.  This 
problem is alleviated in computing the Level 2A data set because the antenna patterns and 
the relative geometry of the observations are known a priori.  The weighting coefficients 
can therefore be calculated before observations are actually collected, leaving only the 
less time consuming task of applying the weighting coefficients when the data is 
collected.   

1.3 Historical Perspective  
The idea of applying the Backus-Gilbert method to the microwave radiometer 

deconvolution problem was first suggested by Stogryn [1978].  The technique has 
subsequently been used by a number of investigators for construction of antenna patterns 
[Poe, 1990; Robinson et al., 1992].  For example, Farrar et al. discuss the effect of 
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deconvolution on rain rate retrieval algorithms [Farrar et al., 1994].  While much of this 
work has focused on deconvolution or spatial resolution enhancement, the technique is 
equally applicable to spatial averaging applications as was pointed out by Poe.  As 
explained more fully below, spatial averaging permits noise reduction that would not be 
possible for resolution enhancement. 

1.4 Instrument Description 
The AMSR-E instrument is similar to SSM/I.  The major differences are that AMSR 

has more channels and a larger parabolic reflector.  AMSR takes dual polarization 
observations (v-pol and h-pol) at the 6 frequencies shown in Table 1.  The offset 1.6-m 
diameter parabolic reflector focuses the Earth radiation into an array of 6 feedhorns.  The 
radiation collected by the feedhorns is then amplified by 14 separate total-power 
radiometers.  The 18.7 and 23.8 GHz receivers share a feedhorn, while dedicated 
feedhorns are provided for the other frequencies.  Two feedhorns are required for the 89 
GHz channels to achieve 5-km along-track spacing.  Figure 1 shows the block diagram 
for this configuration. 

Table 1. Instrument Specifications for AMSR-E 

Center Frequencies (GHz) 6.925 10.65 18.7 23.8 36.5 89.0 

Bandwidth (MHz) 350 100 200 400 1000 3000 

Sensitivity (K)  0.3  0.6  0.6  0.6  0.6  1.1  

IFOV (km x km)  75 × 43 51× 29  27 × 16 32 × 18  14 × 8  7 × 4 

Sampling Rate (km x km)  10 × 10 10 × 10 10× 10  10 × 10  10 × 10 5 × 5 

Integration Time (msec)  2.6  2.6  2.6  2.6  2.6  1.3  

Main Beam Efficiency (%)  95.3  95.0  96.3  96.4 95.3  96.0  

Beamwidth (degrees)  2.2 1.4  0.8  0.9  0.4  0.18  

 

The parabolic reflector and feedhorn array are mounted on a drum containing the 
radiometers, digital data subsystem, mechanical scanning subsystem, and power 
subsystem.  The reflector/feed/drum assembly is rotated about the axis of the drum by a 
coaxially mounted bearing and power transfer assembly.  All data, commands, timing and 
telemetry signals, and power pass through the assembly on slip ring connectors to the 
rotating assembly.  

A cold reflector and a warm load are mounted on the transfer assembly shaft and do 
not rotate with the drum assembly. They are positioned off axis such that they pass 
between the feedhorn array and the parabolic reflector, occulting it once each scan. The 
cold reflector reflects cold sky radiation into the feedhorn array thus serving, along with 
the warm load, as calibration references for the AMSR.   

The AMSR rotates continuously about an axis parallel to the spacecraft nadir at 40 
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rpm. At an altitude of 705 km, it measures the upwelling Earth brightness temperatures 
over an angular sector of ± 90° degrees about the sub-satellite track, resulting in a swath 
width of 1670 km.  During a scan period of 1.5 seconds, the spacecraft sub-satellite point 
travels 10 km.  Even though the instantaneous field-of-view for each channel is different, 
Earth observations are recorded at equal intervals of 10 km (5 km for the 89 GHz 
channels) along the scan.  The two 89-GHz feedhorns are offset such that their two scan 
lines are separated by 5 km in the along-track direction. The nadir angle for the parabolic 
reflector is fixed at 47.4°, which results in an Earth incidence angle θi of 55° ± 0.3°.  The 
small variation in θi is due to the slight eccentricity of the orbit and the oblateness of the 
Earth. 
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Figure 1:  Block diagram for AMSR-E feedhorns and radiometers. 
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1.5 Level 2A Data Set 
Although the Backus-Gilbert method could in principle be used to construct effective 

observations corresponding to gain patterns either larger or smaller than those of the 
actual observations, the noise amplification for construction of smaller gain patterns 
(deconvolution) was deemed unacceptable.  In the interest of completeness, all actual 
brightness temperature observations derived directly from Level1A will be included 
(unchanged) as part of the Level2A data set.  Consequently, all observations of the 
Level 2A data set are either unsampled actual observations (e.g., 37 GHz at Res. 4 and 
the 89 GHz at Res. 5), or constructions of larger gain patterns from multiple smaller 
patterns (spatial averaging).  When the observations are spatially averaged, the resulting 
noise factor is always less than 1. 

Table 2 describes the complete Level 2A data set, with such ancillary data as time, 
geolocation, and quality assessment under the heading of �misc.� (Note that because the 
18.7 and 23.8 GHz footprint are similar in size, both are described as �Resolution 3� 
although resampling will use the 18.7 GHz pattern.)  Observation values are saved as 
unsigned integers with a scaling factor of 0.01 for all channels.  The engineering values 
are obtained by multiplying by the scaling factor.  The data volumes in the table 
correspond to 1.5 seconds of observation (1 complete scan).  The data volume of 43,220 
bytes for one scan implies a daily data rate of nearly 2500 MB. 

An eight bit quality index is calculated for every observation at each resolution.  Four 
of these bits indicate the fraction of the antenna pattern that is land, (weighted according 
to the gain pattern).  When multiplied by the expected land-sea temperature difference, 
the result is the expected temperature error caused by land contamination. The user can 
then decide whether this amount of contamination is acceptable given the application of 
the data.  The remaining 4 bits are reserved for future assignment. 

In addition to conveying temperature information, the sixteen bits of each temperature 
data record also convey some quality control information.  Completely missing TB are 
denoted by a value of 0 K.  This indicates that all relevant Level 1A data were missing.  
The temperature of 320 K is reserved for observations that are for whatever other reason 
unusable.  Negative temperatures are used to signify observations that are somewhat 
questionable due to unreliability of at least one of the contributing Level 1A observations.  
Although these temperatures can probably be used safely, the negative temperature 
assignment is provided as a warning to the data user.  The threshold that will differentiate 
the unusable observations that are labeled as 320 K from the observations that are given 
negative values has not yet been established.  
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Table 2: AMSR-E Level 2A Data Volumes 
Data Item Obj. No. Bytes Level1A 

Samples/scan 
Level2A 
Samples/scan 

Misc. overhead data 1 10292 14996
6.9V Res. 1 TB (K) (Unsampled) 1 2 294 294

  6.9H Res. 1 TB (K) (Unsampled) 3 2 294 294
  6.9V Res. 1 TB (K) 2 2 0 294
  6.9H Res. 1 TB (K) 4 2 0 294
10.7V Res. 1 TB (K) 5 2 0 294
10.7H Res. 1 TB (K) 8 2 0 294
18.7V Res. 1 TB (K) 11 2 0 294
18.7H Res. 1 TB (K) 14 2 0 294
23.8V Res. 1 TB (K) 17 2 0 294
23.8H Res. 1 TB (K) 21 2 0 294
36.5V Res. 1 TB (K) 25 2 0 294
36.5H Res. 1 TB (K) 29 2 0 294
89.0V Res. 1 TB (K) 41 2 0 294
89.0H Res. 1 TB (K) 46 2 0 294
10.7V Res. 2 TB (K) (Unsampled) 6 2 294 294
10.7H Res. 2 TB (K) (Unsampled) 9 2 294 294
10.7V Res. 2 TB (K) 7 2 0 294
10.7H Res. 2 TB (K) 10 2 0 294
18.7V Res. 2 TB (K) 12 2 0 294
18.7H Res. 2 TB (K) 15 2 0 294
23.8V Res. 2 TB (K) 18 2 0 294
23.8H Res. 2 TB (K) 22 2 0 294
36.5V Res. 2 TB (K) 26 2 0 294
36.5H Res. 2 TB (K) 30 2 0 294
89.0V Res. 2 TB (K) 42 2 0 294
89.0H Res. 2 TB (K) 47 2 0 294
18.7V Res. 3 TB (K) (Unsampled) 13 2 294 294
18.7H Res. 3 TB (K) (Unsampled) 16 2 294 294
23.8V Res. 3 TB (K) (Unsampled) 20 2 294 294
23.8H Res. 3 TB (K) (Unsampled) 24 2 294 294
23.8V Res. 3 TB (K) 19 2 0 294
23.8H Res. 3 TB (K) 23 2 0 294
36.5V Res. 3 TB (K) 27 2 0 294
36.5H Res. 3 TB (K) 31 2 0 294
89.0V Res. 3 TB (K) 43 2 0 294
89.0H Res. 3 TB (K) 48 2 0 294
36.5V Res. 4 TB (K) (Unsampled) 28 2 294 294
36.5H Res. 4 TB (K) (Unsampled) 32 2 294 294
89.0V Res. 4 TB (K) 44 2 0 294
89.0H Res. 4 TB (K) 49 2 0 294
89.0V Res. 5 TB (K) (Unsampled) 45 2 1176 1176
89.0H Res. 5 TB (K) (Unsampled) 50 2 1176 1176
Total Bytes in scan (1.5 sec.) 20876 43220
Total Megabytes in orbit (99 min.) 82.67 171.15
Total Megabytes in day 1202.46 2489.47
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Figure 2 is a schematic diagram illustrating the approximate geometry of the 
observations included in the Level 2A data set. The large antenna patterns in the figure 
indicate the locations of the Res. 1 through Res. 4 observations.  The small patterns 
indicate the placement of the Res. 5 observations.  Res. 1 through Res. 4 observations 
occur at 10 km intervals.  The Res. 5 observations are on a 5 km spacing interleaved with 
the lower resolution observations.   

 

 

Scan A

Scan C

 

Figure 2: Geometry of observations from Level 2A data set.  Scan A and Scan C are 
separated by approximately 10 km and follow sequential scans of the instrument 
(1.5 seconds apart). 
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2. Theoretical Basis of Algorithm 

2.1 Introduction 
The objective of the Level 2A algorithm is to bring the AMSR brightness temperature 

observations to a set of common spatial resolutions.  In preparation for doing this, it is 
necessary to remove antenna spillover and cross-polarization effects from AMSR TA 
observations.  We include a discussion of spillover and cross-polarization correction here 
because of its extreme importance to the overall observation processing, even though it is 
not part of resampling per se.  We also include a discussion of the effect of incidence 
angle variation over the antenna�s main lobe.  In Section 2.4 we then provide the Backus-
Gilbert formulation for the Level 2A processing. 

2.2 Removal of Antenna Spillover and Cross-Polarization Effects 
Consider an antenna with a unit boresight vector kB and unit polarization vector pB 

(where kB ⋅pB = 0).  For directions k away from kB, the polarization vector is given by 

 p k p k k p kB B B B= × × × ×b g b g  (1) 

A perfect antenna would be linearly polarized along p.  In reality, there is a small amount 
of cross-polarization leakage that produces elliptical polarization.  It is generally assumed 
that the co-polarization and cross-polarization components are in phase such that the 
major axis of the ellipse is aligned with p.  For Earth-viewing radiometers, the boresight 
polarization vector pB is generally aligned with either the Earth horizontal or vertical 
polarization vector, which are defined by 

 H N k N k= × ×  (2) 

 V k H= ×  (3) 

where N is the unit normal to the Earth�s surface at the point where the view vector k 
intersects the Earth.  Note that k points downward and N points upward.  Dual-
polarization radiometers have two ports.  The port for which pB is aligned with V is 
called the v-pol port, and the port for which pB is aligned with H is called the h-pol port.  
Note that off boresight the antenna polarization vector p is not aligned with either V or H.  
This rotation of the antenna polarization vector with respect to the Earth polarization 
vectors is discussed below. 

The amount of power received by the antenna from some specified differential solid 
angle is given by the antenna pattern.  The co-pol pattern gives the received power that is 
polarized along p, and the cross-pol pattern gives the received power that is polarized 
orthogonal to p.  We denote the co-pol pattern by GPP and the cross-pol pattern by GPQ.  
The first subscript P denotes the antenna port (either V or H), and the second subscript 
denotes the polarization of received power.  We are using the subscript Q to denote the 
polarization orthogonal to P.  When P = V, then Q = H, and vice versa.  Typically GPQ is 
20 to 25 dB lower than GPP.  The gains are normalized such that the following integral 
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equals unity 

 d G GPP PQ
E S

Ω + =
+
z c h 1 (4) 

The E + S on the integral denotes that the integration is over both the earth and cold 
space (i.e., the full 4π steradians).  The gains GPP and GPQ are implicit functions of the 
solid angle Ω.  The antenna temperature received by the antenna is [Claassen and Fung, 
1974]  

 

T d G T T G T T

d G G T

AP PP BP BQ PQ BQ BP
E

PP PQ BC
S

= + + +

+ +

z
z

Ω

Ω

cos sin cos sin2 2 2 2ϕ ϕ ϕ ϕc h c h

c h
 (5) 

where we have partitioned the integral into two regions: the Earth and cold space.  The 
Earth brightness temperatures TBP and TBQ are implicit functions of Ω, and the cold space 
brightness temperature TBC is a constant.  The angle ϕ is the angle made the antenna 
polarization vector p and the Earth polarization vector P (where p and P are the same 
polarization). 

The cold-space contribution is subtracted from TAP and the antenna gains are 
renormalized.  The resulting quantity ′TAP  is called the Earth antenna temperature.  

 ′ = − −−T T TAP P AP P BCΛ Λ1 1b g  (6) 

 Λ ΩP PP PQ
E

d G G= +z c h (7) 

The term 1 − ΛP is commonly called the spillover factor and can be measured in the 
field.  Combining (5) and (6) gives 

 ′ = + + +− zT d G T T G T TAP P PP BP BQ PQ BQ BP
E

Λ Ω1 2 2 2 2cos sin cos sinϕ ϕ ϕ ϕc h c h  (8) 

We now make an approximation based on the fact that the AMSR antenna patterns 
are narrow.  The AMSR 6.9 GHz channels have the largest 3-dB full beam width, which 
is about 2.2°.  Over the main lobe of the antenna pattern, which is about 2.5 times the 3-
dB beam width, the polarization rotation angle ϕ ranges from 0° to a maximum value of 
2°.  Thus a good approximation for AMSR is to set ϕ to 0° in (8).  Simulations show the 
error in setting ϕ to 0° is a maximum of 0.03K in ′TAP . 

Apart from a scaling factor, the general shape of the cross-pol gain is similar to the 
co-pol gain, and accordingly we make use of the following expression: 

 G GPQ P P PP P= − +−χ χ ε( )1 1  (9) 

 χ P P PQ
E

d G= − zΛ Ω1  (10) 

The first term of (9) is a scaled down version of the co-pol gain and εP accounts for 
deviations of GPQ from the shape of the co-pol gain.  These deviations may include a 
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quasi-null at boresight and relatively high sidelobes.  The term χP is cross-polarization 
leakage.  It is a measure of the total cross-pol power divided by the total power (both co-
pol and cross-pol), which can be measured in the field.  Preliminary estimates of the 
AMSR antenna patterns indicate that χP will be about 1%.  The normalization in (9) is 
such that  

 d P
E

Ω ε =z 0 (11) 

Setting ϕ to 0° and substituting (9) into (8) gives 

 ′ = + − +− − −z zT d G T T d TAP P PP BP P P BQ
E

P P BQ
E

Λ Ω Λ Ω1 1 11χ χ εb ge j  (12) 

In general, the second integral represents a very small zero-mean error, which will be 
essentially zero if the variations in Earth brightness temperature are uncorrelated with the 
variations in εP.  To determine the worst-case magnitude of the εP term, we integrate |εP| 
as computed from preliminary AMSR antenna patterns and find 

 d P
E

Ω ε ≈z 0 005.  (13) 

If the TB variations over the main lobe that are correlated with εP are 5 K, then the second 
integral will contribute 0.025 K to ′TAP .  We consider this to be a worst case, and hence 
we set the second integral to zero. 

Dual polarization radiometers generally have the property that the v-pol and h-pol co-
pol gains are very similar.  In view of this, we make use of the following expression to 
relate GPP and GQQ: 

 G GPP P P Q Q QQ= − − +
−

Λ Λ1 1
1

χ χ εb g c h  (14) 

where the leading factors properly normalize GPP such that the integral of error ε is zero, 
analogous to (11) above.  Substituting (14) into (12) gives 

 

′ = + −

+ −

− − −

− −

z z
z

T d G T d G T

d T

AP P PP BP
E

P Q QQ BQ
E

P P P BQ
E

Λ Ω Λ Ω

Λ Ω

1 1 1

1 1

1

1

Q χ χ

χ χ ε

c h

b g
 (15) 

As was the case above, the last integral is a very small zero-mean error that goes to zero if 
variations in ε and TBQ are uncorrelated.  We set this term to zero. 

Let TBP denote the Earth brightness temperature integrated over the co-pol antenna 
pattern. 

 T d G TBP P P PP BP
E

= −− − zΛ Ω1 11 χb g  (16) 

The leading factors normalized GPP such that its integral over the Earth equals unity.  
Substituting (16) in (15) gives 
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 ′ = − +T T TAP P BP P BQ1 χ χb g  (17) 

Equation (17) represents two simultaneous equations, one for P = V and the other for P = 
H.  Solving these two equations yields 

 T T T TBP AP P P Q AP AQ= ′ + − − ′ − ′
−

χ χ χ1
1c h c h  (18) 

which holds for both P = H and P = V. 

In summary, the antenna temperature observations are first corrected for cold-space 
spillover using equation (6) to obtain the Earth antenna temperature.  Equation (18) is 
then used to remove the effect of the cross-polarization.  The final result is the Earth 
brightness temperature TBP averaged over the normalized co-pol antenna pattern.  This 
procedure requires two antenna pattern measurements: the spillover factor 1 − ΛP and the 
cross-polarization leakage χP.  We expect that the major source of error in computing TBP 
will be due to the error in measuring 1 − ΛP and χP in field, rather than the error in the 
numerical approximations used above. 

2.3 Incidence Angle Variation over the Main Lobe 
The Earth brightness temperature depends on the antenna view direction, which is 

specified in terms of two angles: the incidence angle θ and the azimuth angle φ.  The 
incidence angle is the angle made by the viewing vector k and the normal vector N to the 
Earth�s surface: 

 θ = − ⋅ ⋅arccos k N k Nb g (19) 

The azimuth angle is the angle made by the projection of k onto the Earth surface relative 
to north.  At 6.9 GHz, over the main lobe of the antenna, θ and φ vary by about ± 2°.  The 
variation of TB with φ is typically quite small.  For example, the ocean shows a maximum 
peak-to-peak variation of about 5 K over 180°, which corresponds to less than a ±0.1 K 
variation over the main lobe.  Hence the φ variation can be neglected.  However, the θ 
variation is more significant.  Over the ocean with clear skies, the v-pol TB increases by 
about 2 K per degree increase in θ.  To analyze the effect of the θ variation, we use the 
following model for the TB versus θ dependence over the main lobe of the antenna. 

 T T h hB BO= + +1 1 2
2∆ ∆θ θc h (20) 

where TBO is the brightness temperature measured at the boresight incidence angle, ∆θ is 
the difference between the local incidence angle and the boresight incidence angle, and h 
is a constant.  Substituting (20) into (16) gives (the P subscripts are now implicit)  

 T d GT d GT h hB BO
E

BO
E

= + +z z −Ω Ω ∆ ∆2
2

1
11θ θb g  (21) 

 G G h= − +− −Λ ∆1 1
11 1χ θa f b g  (22) 

where the incidence angle dependence has been lumped into the antenna gain.  
Simulation shows that the integral of G∆θ is essentially zero, so G  retains its proper 
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normalization.  The first integral is normalized so that if TBO is constant over the antenna 
pattern, then T TB BO= .  The second integral represents a small bias term due to the non-
linear part of the TB versus θ relationship.  The value of the bias depends upon the surface 
type and polarization.  The worst case is a v-pol observation of the ocean under clear 
skies for which the bias is about + 0.1 K.  When doing the geophysical processing, this 
bias is subtracted from TB , thereby leaving just the first integral in (21).  This integral has 
the important property that the brightness temperature TBO depends only on Earth location 
and not on the viewing direction.  This property along with the fact that G  is properly 
normalized are necessary conditions for the spatial resolution matching techniques to be 
discussed in the next section. 

2.4 Mathematical Description of Level 2A Algorithm 
For simplicity, the notation used in the remainder of the discussion is slightly 

modified from that used earlier.  In addition to dropping the polarization subscript, a new 
subscript i is added to brightness temperatures and antenna gain patterns to differentiate 
between observations. Finally, the leading constants of equation (16) are absorbed into 
the expression for the gain pattern, and each observation is expressed as an integration 
over a surface area rather than an integration over a solid angle.  In summary then, using 
the substitution 

 G
ri ← −− −Λ 1 1

21( ) cosχ θ GPP  (23) 

equation (16) can be rewritten so that an observed antenna temperature centered at 
location ρ0 can be expressed as 

 T T G dABi B i= z ρ ρa f a f  (24) 

where TB ρa f is the brightness temperature of the Earth at some location ρ , and Gi ρa f  is 
the antenna gain pattern corresponding to the specific observation.  The constructed 
brightness temperature �TB  is defined as a weighted sum of actual observations 

 

�

( )

T a T

T a G dA

B i Bi
i

N

B i i
i

N

=

=

=

=

�

�z
1

1

ρ ρa f
 (25) 

The challenge is to choose weighting coefficients ai  such that the constructed 
brightness temperature �TB  and the effective antenna pattern a Gi ii

N
( )ρ

=� 1
 have desirable 

characteristics.  The ideal effective antenna pattern should closely match some specified 
target pattern, and minimally amplify noise.  In general, these two objectives are 
incompatible, requiring some compromise.  The Backus-Gilbert method accomplishes 
this compromise by providing a solution vector a  of weights that minimize a sum of the 
integrated squared error in the fit, and variance due to noise amplification.  Adapting the 
notation of Stogryn, this sum can be expressed as 
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 Q Q e w= +0
2 β , (26) 

and is minimized subject to the normalizing constraint that 

 a G dAi i
i

N

( )ρ =
=
�z 1

1

. (27) 

In this formulation, 

 Q a G F J dAi i
i

N

0
1

2

= −L
NM

O
QP=

�z ( ) ( ) ( )ρ ρ ρ  (28) 

is a measure of how well the constructed pattern matches a desired pattern F( )ρ .  (The 
integral of F( )ρ  is normalized to 1).  The variance of the weighted sum �TB  due to 
measurement errors on the TBi  is e2 = a EaT , where E  is the error covariance matrix of the 
actual measurements.  (In other words, error in �TB  resulting from measurement noise is 
proportional to the noise amplification factor nf = a aT  under the working assumption 
that measurement errors for each observation of a given channel are equal and 
independent, i.e., E I= σ 2 .)  A smoothing parameter β  ranges from 0 to infinity, and w  is 
a scaling factor.  The value of the smoothing parameter reflects the importance of 
achieving a good fit relative to the importance of minimizing amplification of 
measurement noise.  For simplicity, the scaling factor w  was set to unity for our 
calculations, effectively giving β  the combined role of both scaling factor and smoothing 
parameter.  This convention does not impose any additional restriction on the set of 
possible solutions to the minimization problem.   

In general, the vector of weighting coefficients that minimizes Equation (26) subject 
to constraint (27) is 

 a V v u V v
u V u

u1
T 1

T 1= + −F
HG

I
KJ

L
NM

O
QP

−
−

−

1  (29) 

where 

 V G E= + w β  (30) 

 u G dAi i= z ( )ρ  (31) 

 v G F J dAi i= z ( ) ( ) ( )ρ ρ ρ  (32) 

 G G G J dAij i j= z ( ) ( ) ( )ρ ρ ρ . (33) 

 

Investigation revealed that the benefit of using the weighting factor J( )ρ  to suppress 
sidelobes was small, while the resulting distortion to the main lobe of the constructed 
pattern was significant.  Consequently, the weighting factor was set to unity throughout 
this application. 
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3. Calculation of Weighting Coefficients  

3.1 Introduction 
Calculation of weighting coefficients requires specification of the shape of the target 

pattern, the location of the target pattern relative to the actual measurements, the set of 
actual observations used, and the smoothing parameter for each constructed observation.  
In general, actual observations within an 80 km radius of the constructed pattern are 
considered for possible contributors to the construction.  An 80 km radius is chosen 
because it is larger than even the largest of the target patterns (Res. 1).  Of the many 
observations within the 80 km radius, those that are too far from the target pattern to play 
a role in the construction are assigned a weight of zero by the algorithm.  Thus, the only 
cost to having an excessively large search radius is computation time, not accuracy.     

Weighting coefficients are computed on the basis of simulation of the antenna 
patterns for a portion of a circular orbit around a spherical Earth.  Sensitivity analysis will 
demonstrate that the weights produced through the simulation are appropriate for the 
actual (slightly elliptical) orbit around the slightly oblate Earth. 

3.2 Target Patterns  
As stated earlier, the target patterns used to compute the Resolution 1 through 4 

observations of the Level 2A data set correspond to the footprint sizes of the 6.9, 10.7, 
18.7, and 36.5 GHz antenna patterns.  (The 89 GHz data are derived directly from the 
Level 1A data set, without spatial averaging.)  Each of the constructed patterns is centered 
at the location of an actual observation.  For example, the calculated 6.9 GHz patterns 
with a spacing of approximately 10 km fall on sites of the actual Level 1A 6.9 GHz 
observations, which also have a spacing of approximately 10 km.   

The target gain patterns should match the actual AMSR antenna patterns.  Currently, 
the target gain patterns as well as the actual observation gain patterns are modeled as 
uniform plane waves diffracted by a circular aperture representing the antenna.  The 
antenna patterns will be modified in the future to match actual AMSR antenna pattern 
measurements when they become available.  

The antenna patterns are currently sampled on a grid with a spatial resolution ranging 
from 4 km in the case of the 6.9 GHz patterns, to 1 km for the 37 GHz patterns.  The 
number of samples resulting from these sampling resolutions greatly exceeds the number 
of points at which the actual patterns will be characterized through pre-launch antenna 
pattern measurements.  Thus, this resolution is more than sufficient to capture our current 
knowledge of the actual antenna patterns.   

3.3 Tradeoff Analysis: Choice of Smoothing Parameter 
As stated earlier, error on a constructed observation �TB  arises from two sources.  The 
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first source of error is mismatch between the ideal antenna pattern and the construction.  
The error in �TB  due to pattern mismatch can be described by the following equation. 

 E a G F T dAi i
i

N

B1
1

= −
L
NM

O
QP=

�z ( ) ( ) ( )ρ ρ ρ  (34) 

Although the expectation of E1 is 0, the variance of E1 depends on the spatial 
statistics of the actual temperature field TB( )ρ .  For example, the simplest case of a 
constant temperature field would result in E1 0=  even if the constructed pattern bore 
little resemblance to the desired pattern.  Alternatively, Equation (28) would be 
proportional to the fit error if the power spectral density of TB( )ρ  were uniform 
[Poe, 1990].  Unfortunately, an actual temperature field will match neither of these 
convenient cases.  

The second source of error is random measurement error. The variance of �TB  due to 
random measurement error is independent of the actual temperature field, depending only 
on the weighting coefficients and the observation error of each observation TBi .  (See the 
discussion of the noise factor nf  in Section 2.4.)  For this reason, the effect of random 
measurement error is more easily quantified than the effect of fit error.  

The two types of error cannot be directly compared (or added), except contingent on 
specific assumptions about the spatial characteristics of the actual temperature field 
TB( )ρ .  One approach is to use actual high-resolution observations to represent TB( )ρ .  
Poe [1990], Robinson et al. [1992], Farrar and Smith [1992], and Farrar et al. [1994] used 
this approach.  Another approach is to simulate TB( )ρ .  Robinson et al. [1992] used a 
circular pattern for this purpose. 

Integrating the absolute value of the fit error provides what might be considered a 
�worst case� measure of the effect of pattern mismatch.  Throughout the remainder of this 
discussion and in the figures that follow, this scalar value is used as a measure of the fit.  
This measure was chosen in order to avoid any possibility that mismatched areas of 
opposite sign might misleadingly produce an apparently small error through cancellation.   

Although the smoothing parameter can be set to zero (see Poe [1990] for example), 
specification of a nonzero value allows judicious tradeoff of the noise reduction benefits 
of multiple observations versus the need to maintain a good fit.  Figure 3 illustrates this 
tradeoff for one specific Level 2A data product at various observation positions along the 
scan.  While other data products will differ in detail from this example, the general 
principle is that increased smoothing reduces the noise factor while degrading the fit.  For 
this data product, this tradeoff is most conspicuous at the edges of the scan, whereas the 
combination of fit and noise factor selected nearer the center of the scan is essentially 
optimized for fit.  In addition to generally determining the tradeoff of fit versus the noise 
factor, even a very small amount of smoothing produces the additional benefit of 
stabilizing the matrix inversions against roundoff error without otherwise affecting the 
calculated weighting coefficients. 
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Figure 3: Tradeoff of noise factor and fit as a function of smoothing parameter for 
various scan positions for one specific Level 2A data product.  Each open circle 
indicates the combination of fit and noise factor selected for that scan position.  The 
end of each line corresponds to no smoothing � minimized fit error.   
 

The following considerations should guide the choice of a smoothing parameter.  It is 
generally counterproductive to construct an antenna pattern that is more �accurate� than 
necessary at the expense of increased noise factor.  Thus one guideline for choice of the 
smoothing factor is that the mismatch between the constructed pattern and the target 
pattern should not be smaller than the uncertainty in the target pattern.  Another guideline 
is that the constructed pattern should not have negative values.  This is not anticipated to 
be a problem in these averaging applications, but it would be a significant concern for 
deconvolution.  Another guideline is that the noise factor should not exceed 1.  This too 
would be a greater concern for deconvolution than for averaging. 

In the center of the scan, an amount of smoothing is chosen that allows nearly the best 
possible fit for that combination of frequencies.  The only exceptions to this rule occur 
when the frequency of the actual observations matches the frequency of the ideal pattern 
that is being constructed.  In those cases, the best possible fit is theoretically perfect, (i.e., 
giving full weight to the center observation and ignoring all the others).  In those cases, a 
small amount of smoothing is chosen resulting in a fit error of less than 2%.   

Figure 4 illustrates the ideal gain pattern, the reconstruction, and the difference 
between the two for the Res. 3 pattern generated from 37.5 GHz patterns.  In this 
example, the location of the construction (the center of the scan or observation number 
98) and combination of channel number match those of Figure 3. The smoothing 
parameter chosen is β = 0 0001. .  Consistent with the preceding paragraph, this amount of 
smoothing permits nearly the best fit possible for this set of actual observations while 
allowing a reasonable amount of noise reduction.  Note that the difference plot extends 
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somewhat beyond what might usually be considered the extent of the actual ideal antenna 
pattern.  This effect is one result of the fact that a large number of observations are 
combined to produce the reconstruction.   

 

 
Figure 4: Example comparison of ideal antenna pattern with constructed.  (a) is the 
ideal, (b) is the constructed version, and (c) is the difference.  Note that the vertical 
scale of (c) is exaggerated by a factor of five relative to (a) and (b). 
 

For a specified observation frequency and a specified target pattern, the smoothing 
parameter used to produce the constructed pattern need not be constant across the entire 
scan.  Instead, it is desirable to adjust the smoothing parameter through the course of a 
scan to take advantage of the generally increasing density of observations away from the 
center of the scan, or to compensate for the fact that observations are not available beyond 
the scan edge.  Adjustment of the smoothing parameter throughout the scan can thus 
result in a nearly constant noise factor across the entire scan.   

The smoothing factor at each position across the scan of each Level 2A data set is 
chosen in the following way.  The amount of smoothing applied at the center is also 
applied for observations closer to the edges.  The general effect of maintaining a constant 
smoothing factor is that the noise factor decreases as the spatial density of the actual 
observations increases towards the edges.  This trend holds true until the extreme edges 
of the scan, at which point the fit must degrade because the patterns to be constructed 
extend beyond the area in which observations were actually obtained.  For construction of 
observations at the extreme edges of the scan, sufficient smoothing is added to keep the 
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noise factor from exceeding the value at the center.  Figure 5 shows the fit and noise 
factor across an entire scan for one specific case, (in this case, the same combination of 
frequencies illustrated in Figure 3 and Figure 4).   
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Figure 5: Noise factor and integrated magnitude of error between actual antenna 
pattern and interpolation across a single scan from -61°°°° to +61°°°° for a single data 
product. 
 

The noise factor and fit of each of the Level 2A objects at the center of the scan is 
shown in Table 3.  As in Table 2, Resolutions 1 through 5 correspond to the footprint 
sizes of the 6.9, 10.7, 18.7, 36.5, and 89 GHz observations.  Note that the integrated fit 
error is small in every case, and that the noise factor is often significantly less than 1.  The 
vertically and horizontally polarized gain patterns for each frequency are currently 
modeled identically, but that will not necessarily remain true if more accurate 
measurements of actual antenna patterns become available.  Also note that for a given 
Level 1A channel, the noise factor decreases as the resolution of the constructed pattern 
becomes larger and the number of useful actual observations increases. 
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Table 3: Noise Factor and Fit of Constructions at Center of Scan. 
Data Item Object Nos. Noise 

Factor 
Fit Error 

  6.9 GHz to Res. 1 2, 4 .349 .034 
10.7 GHz to Res. 1 5, 8 .149 .039 
18.7 GHz to Res. 1 11, 14 .130 .043 
23.8 GHz to Res. 1 17, 21 .127 .059 
36.5 GHz to Res. 1 25, 29 .126 .088 
89.0 GHz to Res. 1 41, 46 .062 .141 
10.7 GHz to Res. 2 7, 10 .481 .063 
18.7 GHz to Res. 2 12, 15 .217 .040 
23.8 GHz to Res. 2 18, 22 .204 .034 
36.5 GHz to Res. 2 26, 30 .196 .061 
89.0 GHz to Res. 2 26, 30 .094 137 
23.8 GHz to Res. 3 19, 23 .469 .041 
36.5 GHz to Res. 3 27, 31 .367 .082 
89.0 GHz to Res. 3 43, 48 .161 .151 
89.0 GHz to Res. 4 44, 49 .309 .153 

 

3.4 Simulation Characteristics 
Weighting coefficients are calculated assuming a spherical Earth and a circular orbit.  

The Earth was assumed to have a radius of 6367 km, and the instrument altitude was 
assumed to be 705 km.  Actual observation geometry will vary slightly as a result of 
oblateness of the Earth, and the elliptical instrument orbit.  The effects of these factors on 
variations in the distance between successive scans and the distance between observations 
within a scan are described below. Section 3.5 summarizes the reasoning used to 
demonstrate that the weighting coefficients obtained for the nominal orbital case are 
applicable generally. 

3.4.1 Altitude 
Figure 6 illustrates the instrument altitude throughout an entire orbit for perigee 

angles of 0°, 45°, and 90°.  The figure confirms the nominal altitude of 705 km, and 
shows that the Level 2A algorithm must function over a range of approximately ±25 km.  
Because variations in altitude modify both the spacing between the observations and the 
antenna patterns themselves, the first order effect of changes in altitude is merely to scale 
the actual and reconstructed antenna patterns rather than to degrade the fit. 
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Figure 6: Instrument altitude throughout an entire orbit for three different perigee 
angles (t0=0°°°°,45°°°°,90°°°°). 

3.4.2 Distances between observations within scan 
Figure 7 illustrates the distance between adjacent AMSR observations within single 

scans from -61° to +61° when the instrument is in a polar orbit passing over the equator.  
The three lines correspond to scans 27 seconds ahead and 27 seconds behind a scan 
centered at the equator, as well as the centered scan.  The two most significant causes of 
variation in the distance between adjacent observations are movement of the instrument 
during the scan, and oblateness of the Earth.  These two factors have effects of 
approximately equal magnitude. The effect of Earth rotation is essentially constant over 
the scan.  A spacing of 27 seconds was chosen as a worst case, corresponding to the time 
necessary for 18 scans, or approximately three times the beamwidth of the 6.9 GHz gain 
pattern.   
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Figure 7: Distance (km) between adjacent observations within single AMSR scans 
centered at the equator as well as 27 seconds ahead and behind.   

3.4.3 Distances between scans 
The spacing between scans varies in the course of a complete orbit, and differs among 

the observations within a scan.  These differences arise for the following reasons. 

1. The elliptical satellite orbit would cause variations in the inter-scan distance even for 
a spherical Earth. 

2. The oblateness of the Earth superimposes further variations with some relative phase 
determined by the orientation of the major axis of the satellite orbit relative to the 
Earth axis. 

3. Inter-scan distance is generally greater when measured at the middle of the scan than 
at the edges because the total distance covered in an orbit is greater at the middle of 
the scan. 

4. Earth rotation causes an asymmetry between the inter-scan distance measured at the 
first observation of each scan, and that measured at the last observation of each scan. 

The combined effect of all these considerations is shown in Figure 8 through Figure 
10 for 20 different observation positions across the scan.  These figures differ only in the 
perigee angle of the satellite orbit.  For the cases depicted, the maximum rate of change in 
inter-scan distance is approximately 0.35 m/scan.  Also, the maximum range of inter-scan 
distances within any orbit is approximately 200 m.   
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Figure 8: Distance between subsequent scans throughout an entire orbit measured 
at 20 different observation positions (t0=90°°°°). 
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Figure 9: Distance between subsequent scans throughout an entire orbit measured 
at 20 different observation positions (t0=45°°°°). 
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Figure 10: Distance between subsequent scans throughout an entire orbit measured 
at 20 different observation positions (t0=0°°°°). 

In summary, the distance between adjacent scans is consistent to within ± 0.2 km, and 
the distance between adjacent observations within a scan is consistent to within 
± 0.02 km.  The altitude is consistent to within ± 25 km.   

3.5 Sensitivity of Constructed Observations 
The sensitivity analysis must consider two issues in order to demonstrate that the 

weighting coefficients derived from simulations using one portion of one simplified orbit 
are applicable to observations in general, (despite the fact that actual orbits are slightly 
elliptical and the Earth is slightly oblate).  The first issue is that some aspect of the 
platform, (e.g., altitude or attitude), might differ from the nominal case simulation.  The 
second aspect is that the assumed antenna patterns might not match the actual antenna 
patterns.  Thus, this portion of the sensitivity analysis must demonstrate that neither the 
model used to generate the weighting coefficients, nor differences in the antenna pattern 
after launch introduce significant fit error.  Ultimately, the most relevant question is not 
the effect of these differences on the derived weighting coefficients, but the resulting fit 
error of the reconstructed antenna patterns.  This sensitivity analysis has not yet been 
completed.   

3.5.1 Sensitivity to orbital characteristics 
The variation of altitudes over the range depicted in Figure 6, and the resulting range 

of inter-observational distances indicated by Figure 7 through Figure 10 should have very 
little effect on the fit of the constructed pattern.  Rather than demonstrate this insensitivity 
for all observations of all Level 2A channels, it will be sufficient to examine a 
representative case.  Those channels most sensitive to variations in the spacing of 
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observations are those in which a small footprint is constructed from a number of still 
smaller footprints.  For example, objects 44 and 49 from Table 3 would be more 
susceptible to this problem than other resampled channels.   

3.5.2 Sensitivity to antenna pattern 
Pre-launch measurements of the actual antenna pattern are used to simulate antenna 

patterns that eventually allow computation of weighting coefficients.  Despite antenna 
pattern measurements conducted prior to launch, the actual antenna patterns when the 
instrument is deployed are only imperfectly known.   
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4. Implementation Issues 

4.1 Introduction 
Weighting coefficients are applied by reading an entire file (one half orbit) of 

Level 1A data at a time.  Tables of weighting coefficients are then used to generate the 
Level 2A constructed measurements as shown in Equation (25).  In implementation, the 
weighting coefficients corresponding to each constructed observation are stored as a 
(29 × 29) array, allowing for weights to be applied to actual observations ± 14 scans and 
± 14 locations along the scan from the constructed observation. These dimensions were 
chosen so that a single array size would accommodate any location of any of the Level 2A 
data products.  In any particular case, many of the coefficients in the array will be zero.  
Ideally, application of weighting coefficients is a straightforward process of applying the 
weighting coefficients corresponding to each constructed pattern within the scan, and 
repeating the process for each of the scans throughout the orbital record.  Several 
considerations may complicate the process, and these issues are discussed below. 

4.2 Handling Missing Data 
In general, Level 2A observations will not be produced at those locations that have no 

data or have erroneous data.  As stated earlier, temperatures of 0 K and 320 K 
respectively will be used to denote these cases.  For each of the locations at which a 
resampled Level 2A observation is produced, a negative temperature will be used to 
indicate that some of the requisite actual measurements were missing.  When data gaps 
occur, a single value of Level 1A data might be produced through interpolation in order to 
permit construction of Level 2A data.  This would only occur under very restricted 
circumstances, (circumstances that have not yet been specified).  One necessary condition 
for such interpolation is that the resampling weight attached to the interpolated 
observation is below an unspecified threshold.   

4.3 Correlations of Level 2A errors 
As a result of the spatial averaging that produces the Level 2A data, errors of 

neighboring observations within any single channel will be somewhat correlated, (in 
contrast to the measurement errors of lower level data products that are assumed to be 
mutually independent).  Errors between channels are not correlated in any case.  Thus, 
while the Level 2A data set is well suited for applications that require combination of 
multiple channels of observations, the user should recognize that errors on observations 
within a single channel are not necessarily independent.   

4.4 Numerical Computation Considerations 
Computation of the weighting coefficients entails inversion of large matrices, an 

operation that can produce unstable results.  This problem is alleviated with the addition 
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of even a small amount of smoothing.  Because all of the weighting coefficients are 
computed using at least a small amount of smoothing, and the weighting coefficients are 
computed and tested long in advance of their application, there is no danger that 
numerical instability will affect the resampled data set.  
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